SHAPE OPTIMIZATION FOR DIRICHLET PROBLEMS: RELAXED SOLUTIONS AND OPTIMALITY CONDITIONS

GIUSEPPE BUTTAZZO AND GIANNI DAL MASO

ABSTRACT. We study a problem of shape optimal design for an elliptic equation with Dirichlet boundary condition. We introduce a relaxed formulation of the problem which always admits a solution, and we find necessary conditions for optimality both for the relaxed and the original problem.

Let Ω be a bounded open subset of $\mathbf{R}^n (n \ge 2)$, let $f \in L^2(\Omega)$, and let $g: \Omega \times \mathbf{R} \to \mathbf{R}$ be a Carathéodory function (i.e. g(x, s)measurable in x and continuous in s) such that

$$|g(x, s)| \le a_0(x) + b_0|s|^2 \qquad \forall (x, s) \in \Omega \times \mathbf{R},$$

for suitable $a_0 \in L^1(\Omega)$ and $b_0 \in \mathbf{R}$. We consider the following optimal design problem:

(1)
$$\min_{A \in \mathscr{A}(\Omega)} \int_{\Omega} g(x, u_A(x)) \, dx,$$

where $\mathscr{A}(\Omega)$ is the family of all open subsets of Ω , and u_A is the solution of the Dirichlet problem

(2)
$$-\Delta u_A = f \text{ in } A, \qquad u_A \in H^1_0(A),$$

extended by 0 in $\Omega \setminus A$.

It is well known that, in general, the minimum problem (1) has no solution (see for instance Example 2). The reason is that, although the solutions u_{A_h} of (2) corresponding to a minimizing sequence (A_h) of (1) always admit a limit point u in the weak (not necessarily in the strong) topology of $H_0^1(\Omega)$, we can not find, in general, an open subset A of Ω such that $u = u_A$. On the contrary, it can be proved (see [4]) that the limit function u is the solution of a relaxed Dirichlet problem of the form

(3)
$$-\Delta u + \mu u = f \text{ in } \Omega, \qquad u \in H_0^1(\Omega) \cap L^2(\Omega; \mu),$$

Received by the editors May 17, 1989 and, in revised form, November, 1989. 1980 *Mathematics Subject Classification* (1985 *Revision*). Primary 49A50.

©1990 American Mathematical Society 0273-0979/90 \$1.00 + \$.25 per page