SUBCRITICALITY, POSITIVITY, AND GAUGEABILITY OF THE SCHRÖDINGER OPERATOR

Z. ZHAO

1. INTRODUCTION

We investigate properties of the Schrödinger operator $H := -(\Delta/2) + V \ge 0$ in $R^d (d \ge 3)$ in the following three aspects:

(I) Subcriticality: Intuitively, the idea is that if $H \ge 0$ is subcritical, then it should be possible to perturb H by small perturbations and still keep its nonnegativity. More precisely, we have the following assertions:

- (a) For any $q \in B_c$ (B_c denotes the class of bounded Borel functions with compact support), there exists an $\varepsilon > 0$ such that $-(\Delta/2) + V + \varepsilon q \ge 0$.
- (b) There exists a function $q \in B_c$, $q \le 0$ and $q \ne 0$ a.e. such that $-(\Delta/2) + V + q \ge 0$.

There have been two other definitions of subcriticality:

- (c) (B. Simon [7]) There exists $\beta > 0$ such that $-(\Delta/2) + (1+\beta)V \ge 0$.
- (d) (M. Murata [6]) There exists a positive Green function $G^{H}(\cdot, \cdot)$ for H.
- (II) Strong Positivity:
 - (e) There exists a positive solution u > 0 of Hu = 0 with the limit: $\lim_{|x|\to\infty} u(x) > 0$.
 - (f) There exists a solution u of Hu = 0 with $c' \ge u \ge c > 0$.
 - (g) There exists a solution u of Hu = 0 with $u \ge c > 0$.

(III) Gaugeability: Let $\{X_t: t \ge 0\}$ be the Brownian motion in \mathbb{R}^d and let \mathbb{E}^x denote the expectation over the Brownian paths starting from $x \in \mathbb{R}^d$. Put $u_0(x) := \mathbb{E}^x [\exp(-\int_0^\infty V(Xs) \, ds)]$.

- (h) $u_0(x) \neq \infty$ in \mathbb{R}^d .
- (i) $u_0(x)$ is bounded in \mathbb{R}^d .

Received by the editors October 25, 1989. 1980 Mathematics Subject Classification (1985 Revision). Primary 81C20.