COMPLETE NONCOMPACT KÄHLER MANIFOLDS WITH POSITIVE HOLOMORPHIC BISECTIONAL CURVATURE

WAN-XIONG SHI

In the theory of complex geometry and Kähler manifolds, one of the famous problems is the following conjecture:

Conjecture. Suppose M is a complete noncompact Kähler manifold with positive holomorphic bisectional curvature. Then M is biholomorphic to \mathbb{C}^n .

Several results concerning this conjecture were obtained in the past few years. In 1981 N. Mok, Y. T. Siu, and S. T. Yau [4] proved the following result:

Theorem 1. Suppose M is a complete noncompact Kähler manifold of complex dimension $n \ge 2$. Suppose M is a Stein manifold and the holomorphic bisectional curvature is nonnegative. Suppose Msatisfies the following assumptions:

- (i) $\operatorname{Vol}(B(x_0, r)) \ge c_0 r^{2n}, \ 0 \le r < +\infty,$
- (ii) $0 \le R(x) \le c_1 / r(x, x_0)^{2+\varepsilon}, x \in M$,

where $0 < c_0, c_1, \varepsilon < +\infty$ are some constants, $B(x_0, r)$ denotes the geodesic ball of radius r and centered at x_0 , $Vol(B(x_0, r))$ denotes the volume of $B(x_0, r)$, $r(x_0, x)$ denotes the distance between x_0 and x, and R(x) denotes the scalar curvature at $x \in M$. Then M is isometrically biholomorphic to \mathbb{C}^n with the flat metric.

Their result was improved by N. Mok [5] in 1984. In [5] N. Mok obtained the following result:

Theorem 2. Suppose *M* is a complete noncompact *n*-dimensional Kähler manifold with positive holomorphic bisectional curvature and satisfies the following assumptions:

- (i) $\operatorname{Vol}(B(x_0, r)) \ge c_0 r^{2n}, \ 0 \le r < +\infty$,
- (ii) $0 < R(x) \le c_1 / r(x_0, x)^2$, $x \in M$,

Received by the editors October 24, 1989 and, in revised form, March 14, 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 53C55, 58G11.