THE BEHAVIOR OF THE MORDELL-WEIL GROUP OF ELLIPTIC CURVES

ARMAND BRUMER AND OISÍN McGUINNESS

1. Introduction

Suppose that E is an elliptic curve defined over \mathbf{Q} given by the equation

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{1}
\end{equation*}
$$

where we assume that $a_{i} \in \mathbf{Z}$. The set $E(\mathbf{Q})$ of solutions (x, y) with $x, y \in \mathbf{Q}$, together with the point at infinity, forms a finitelygenerated abelian group, the Mordell-Weil group of E. It is isomorphic to $\mathbf{Z}^{r} \oplus F$, where F is finite and where r is the rank of E. The possibilities for the finite group F are completely known [9]. The important question then is to understand the behavior of the rank as E varies over elliptic curves. It is still unknown whether r is unbounded or not. In fact, one opinion is that, in general, an elliptic curve might tend to have the smallest possible rank, namely 0 or 1 , compatible with the rank parity predictions of Birch and Swinnerton-Dyer [8]. We present evidence that this may not be the case.

Published examples [2,10] of curves of rank ≥ 2 might suggest that such curves are sparsely distributed. ${ }^{1}$ Mestre and Oesterlé found the 436 modular elliptic curves of prime conductor up to 13100 , using [11]. There were 80 rank 2 curves among the 233 curves of even rank. This proportion of rank 2 curves seemed too large to conform to the conventional wisdom just stated (see also [18, pages 254-255]). We decided to investigate the ranks of elliptic curves in a systematic way, over a significantly larger range.

[^0]
[^0]: Received by the editors October 30, 1989 and, in revised form, March 1, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11G40; Secondary $11 \mathrm{D} 25,11 \mathrm{G} 05,11-04,14 \mathrm{~K} 15$.

 Key words and phrases. Elliptic curve, Mordell-Weil group, rank, Birch-Swinner-ton-Dyer conjecture, Hasse-Weil L-series, discriminant, period.
 ${ }^{1}$ This situation is not unrelated to the ranks of ideal class groups of quadratic fields, where similar phenomena occur [13].

