A SHARP COUNTEREXAMPLE ON THE REGULARITY OF Φ-MINIMIZING HYPERSURFACES

FRANK MORGAN

A standard problem in the calculus of variations seeks a hypersurface S of least area bounded by a given (n-2)-dimensional compact submanifold of \mathbf{R}^n . More generally, given any smooth norm Φ on \mathbf{R}^n , seek to minimize

$$\Phi(S) = \int_S \Phi(\mathbf{n}) \,,$$

where **n** is the unit normal vector to S. Think of the integrand Φ as assigning a cost or energy to each direction. We assume that Φ is *elliptic* (*uniformly* convex), the standard hypothesis for regularity.

Geometric measure theory (cf. [M, Chapters 5, 8], [F 1, 5.1.6, 5.4.15]) guarantees the existence of a (possibly singular) Φ -minimizing hypersurface with given boundary. For the case of area ($\Phi(\mathbf{n}) = 1$), area-minimizing hypersurfaces are regular embedded manifolds up through \mathbf{R}^7 , but sometimes have singularities in \mathbf{R}^8 and above. For general elliptic Φ , a result of Almgren, Schoen, and Simon [Alm S S, Theorem II.7] guarantees regularity up through \mathbf{R}^3 , but there were no examples of singularities below \mathbf{R}^8 . We establish the sharpness of the Almgren–Schoen–Simon regularity result by giving a singular Φ -minimizing hypersurface in \mathbf{R}^4 .

The surface is the cone *C* over the Clifford torus $S^1 \times S^1 \subset \mathbf{R}^2 \times \mathbf{R}^2$:

$$C = \{ (x, y) \in \mathbf{R}^2 \times \mathbf{R}^2 : |x| = |y| \le 1 \}.$$

The norm Φ depends smoothly on $\theta = \tan^{-1}(|y|/|x|)$ alone, so that we may view Φ as a norm on \mathbb{R}^2 . The unit Φ -ball is pictured in Figure 1. Any smooth, symmetric, uniformly convex approximation of the square will do. Note that Φ is smaller (say 1) on

Received by the editors February 10, 1989; in revised form September 25, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 49F22.

Key words and phrases. Elliptic integrand, calibration, minimizing hypersurface, Wulff crystal.