DIFFERENTIABILITY OF ENTROPY FOR ANOSOV AND GEODESIC FLOWS

A. KATOK, G. KNIEPER, M. POLLICOTT, AND H. WEISS

INTRODUCTION

Topological and metric entropies are among the most important global invariants of smooth dynamical systems. Topological entropy characterizes the total exponential complexity of the orbit structure with a single number. Metric entropy with respect to an invariant measure gives the exponential growth rate of the statistically significant orbits. The knowledge of entropies, especially in low-dimensional cases, provides a wealth of quantitative structural information about the system. Such information includes the growth rate of the number of periodic orbits [K 1], "large horseshoes" [K 3], the growth rate of the volume of cells of various dimensions ([Mn] for geodesic flows, [Y] in general), ergodic components, and factors with very stochastic behavior [Pe, Si], etc.

Unfortunately, because the entropies are defined in global asymptotic terms, *a priori*, we do not expect them to change smoothly when the system is perturbed, even in a very nice topology like C^{∞} or C^{ω} (real analytic).

There are several results concerning the regularity of entropy for general diffeomorphisms and flows on compact manifolds. Misiurewicz [Mi 1] constructed examples to show that the topological entropy, h_{top} : $\text{Diff}_{\infty}(M^n) \to \mathbf{R}$ is not continuous for $n \ge 4$. It seems unknown, although unlikely, whether entropy is continuous for n = 3. Yomdin [Y] and Newhouse [N] have proved that h_{top} : $\text{Diff}_{\infty}(M^n) \to \mathbf{R}$ is upper-semicontinuous for $n \ge 2$. Katok [K 1, K 3] has shown that for surfaces, h_{top} : $\text{Diff}_2(M^2) \to \mathbf{R}$ is lower-semicontinuous. By combining these two results, one sees

Received by the editors April 10, 1989 and, in revised form, September 19, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 58F15; Secondary 58F17.

The first author was partially supported by NSF Grant #DMS85-14630.

The fourth author is a Chaim Weizmann Research Fellow.