# A SYMPLECTIC GEOMETRY APPROACH TO GENERALIZED CASSON'S INVARIANTS OF 3-MANIFOLDS 

SYLVAIN E. CAPPELL ${ }^{1,2}$, RONNIE LEE ${ }^{1}$, AND EDWARD Y. MILLER ${ }^{1}$

1. In 1985 lectures at MSRI, Andrew Casson introduced an integer valued invariant $\lambda(M)$ for any oriented integral homology 3-sphere $M^{3}$. This invariant has many remarkable properties; detailed discussions of some of these can be found in an exposé by S. Akbulut and J. McCarthy (see [AM]). Roughly, $\lambda(M)$ measures the 'oriented' number ${ }^{3}$ of irreducible representations of the fundamental group $\pi_{1}(M)$ in $S U(2)$.

In the preceding article of this journal, Kevin Walker [W] described results of his thesis which yield an invariant $\lambda\left(M^{3}\right)$ of an arbitrary oriented rational homology 3-sphere (RHS: $H_{1}\left(M^{3}, Q\right)$ $=0)$ which extends Casson's invariant. His creative methods give generalizations of the properties which Casson had earlier shown for oriented integral homology 3-spheres (IHS: $\left.H_{1}\left(M^{3}, \mathbf{Z}\right)=0\right)$. For homology lens spaces, Boyer and Lions [BL] have independently obtained an inductive definition of $\lambda\left(M^{3}\right)$. Earlier, a different extension of Casson's invariant to certain rational homology spheres, which does not equal Walker's invariant, had been studied by S. Boyer and A. Nicas [BN]. In all of the above works, one is considering only representations into $S U(2)$.

The present announcement solves the problem, which has been emphasized by Atiyah [A], of producing generalizations of Casson's invariant to invariants of $M^{3}$ that would roughly measure the 'oriented' number of representations of $\pi_{1}(M)$ in $G=S U(n)$, for each $n \geq 2$. We introduce $\lambda_{G}\left(M^{3}\right)$, an invariant which is defined for an arbitrary oriented rational homology 3-sphere (RHS).

[^0]
[^0]:    Received by the editors February 21, 1989 and, in revised form, August 7, 1989.
    1980 Mathematics Subject Classification (1985 Revision). Primary 20C99; Secondary 57 M 99 .
    ${ }^{1}$ This work is supported by NSF grants.
    2 John Simon Guggenheim Foundation fellow.
    ${ }^{3}$ Following [W] we do not divide by 2 as in [A-M].

