RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 22, Number 2, April 1990

AN EXTENSION OF CASSON'S INVARIANT TO RATIONAL HOMOLOGY SPHERES

KEVIN WALKER

In 1985, Andrew Casson defined an invariant $\lambda(M)$ of an oriented integral homology 3-sphere M [C, AM]. This invariant can be thought of as counting the number of conjugacy classes of nontrivial representations $\pi_1(M) \to SU(2)$, in the sense that the Lefschetz number of a map counts the number of fixed points. Casson proved the following three properties of λ .

(i) If $\pi_1(M) = 1$, then $\lambda(M) = 0$.

(ii) Let N be the complement of a knot in a homology sphere and let $N_{1/n}$ denote N Dehn surgered along one meridian and nlongitudes (see below for terminology). Then

$$\lambda(N_{1/n}) = \lambda(N) + n\Delta_N''(1),$$

where $\Delta_N''(t)$ is the second derivative of the Alexander polynomial of N.

(iii) $4\lambda(M)$ is congruent modulo 16 to the μ -invariant (see below) of M.

This paper describes an extension of Casson's methods to the case where M is a rational homology 3-sphere, including generalizations of (ii) and (iii). (This extension is different from the one given in [BN].) In addition, an alternate definition of λ , using the generalized Dehn surgery formula, is given (Theorem 1).

Received by the editors June 1, 1989 and, in revised form, August 7, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 57N10, 57M25.