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The object of study of this monograph is a single continuous 
linear operator T : E —• E, where E is a complex Banach space, 
and the central question considered is the so-called "invariant sub-
space problem." We recall that a closed linear subspace M d E 
is invariant for T if TM c M. The invariant subspace prob­
lem asks whether every continuous linear operator T on a Banach 
space E of dimension > 2 has a nontrivial invariant subspace. 
(The trivial invariant subspaces are {0} and E.) This question 
was first asked probably by von Neumann in the particular case 
where E is a Hilbert space, and in this case the problem is still 
open. When £ is a Banach space the answer is negative. Ex­
amples of continuous linear operators without invariant subspaces 
were given first by Enflo [12] on a Banach space built for this pur­
pose. Further examples were given by Beauzamy [6] and Read 
[16]. Read managed later to produce examples on large families 
of Banach spaces, including such familiar spaces as lx and c (the 
spaces of summable sequences and convergent sequences, respec­
tively). 

One should realize that the invariant subspace problem, basic 
as it is, was not the only reason for the development of operator 
theory. In fact, merely knowing that an operator T has nontrivial 
invariant subspaces does not tell us much about T. Fortunately, 
when an operator or class of operators is shown to have invariant 


