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The concept of amenability was first defined for locally com­
pact groups having evolved from the idea of a translation invari­
ant mean or average on the bounded L°°-functions on the real line 
used by von Neumann. If G is a locally compact group, then (left) 
Haar measure m induces a left translation invariant continuous 
positive linear functional on Ll(G), the space of m integrable 
functions. There is no such translation invariant linear functional 
on L°°(G), or on several other large spaces of bounded functions, 
for most locally compact groups G. The groups for which there is 
such a positive invariant mean were called amenable by M. M. Day 
(1950). The transition of amenability from groups to Banach al­
gebras arose from the transfer of Hochschild cohomology into this 
setting. 

If X is a Banach module over a Banach algebra A, then the 
first (continuous Hochschild) cohomology group Hl (A, X) is the 
quotient of the linear space of (continuous) derivations by the 
space of inner derivations. A derivation D from A into X is a 
linear operator from A into X such that D(ab) = aD(b) + D(a)b 
for all a, b in A, and D is inner if there is an x in X such 
that D(a) = ax - xa for all a in X. B. E. Johnson [7] showed 
that the amenability of a locally compact group G is equivalent 
to the first cohomology group Hl(Ll(G), X) being zero for each 
dual L1(G)-module X. One direction of the proof uses the in-


