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SYMMETRY BREAKING 
IN EQUIVARIANT BIFURCATION PROBLEMS 

M. J. FIELD AND R. W. RICHARDSON 

1. INTRODUCTION 

In both equivariant bifurcation theory [GSS, especially Chap­
ter XIII] and physical theories of spontaneous symmetry breaking 
(for example, the Higgs-Landau theory [M]), there is the problem 
of determining the symmetries, stabilities and branching patterns 
for solutions of equations equivariant under a compact Lie group 
G. Very few general results and techniques are known for the anal­
ysis of this problem, though versions of a Maximum Isotropy Sub­
group Conjecture have been conjectured, to the effect that gener-
ically all solution branches have maximal isotropy (see for exam­
ple [G, M]). General results of this type are of particular inter­
est for applications on account of the inherent complexity of the 
structure of isotropy subgroups, invariants and equivariants for 
^-representations. In this note, we announce several new results 
for the general study of the symmetries and branching patterns for 
a large class of G-equivariant bifurcation problems. In particular, 
we give new counterexamples to the Maximal Isotropy Subgroup 
Conjecture and present examples where one can get precise infor­
mation on the branching patterns. Our methods also show that 
one can get quite detailed information on these problems without 
full knowledge of the G-equivariants. To simplify our exposition, 
we assume G finite. 

Let F be a finite dimensional real Hubert space and G —• 0{V) 
be an absolutely irreducible representation of the finite group G. 
Let G act on V xR by g • (x, A) = {g • x, A) and let 8? = 
C™(V x R, V) be the space of smooth G-equivariant maps of 
V x R to V. Give S? the C°°-topology; subsets of 8? are given 
the induced topology. Each ƒ e S? defines a one-parameter family 
(/Â)A€R °f e Q u i v a r i a n t vector fields on V. We have /(O, X) = 
0, A € R. These are the trivial zeros of ƒ . We study zeros of 
ƒ bifurcating off the trivial zeros. Now D{f(0, A) = of(X)Idv , 
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