RIGIDITY AND OTHER TOPOLOGICAL ASPECTS OF COMPACT NONPOSITIVELY CURVED MANIFOLDS

F. T. FARRELL AND L. E. JONES

Abstract

Let M be a compact connected Riemannian manifold whose sectional curvature values are all nonpositive. Let Γ denote the fundamental group of M. We prove that any homotopy equivalence $f: N \rightarrow M$ from a compact closed manifold N is homotopic to a homeomorphism, provided that $m \geq 5$ where $m=\operatorname{dim} M$. We show that the surgery L-group $L_{k+m}\left(\Gamma, w_{1}\right)$ is isomorphic to the set of homotopy classes of maps $\left[M \times I^{k}\right.$ rel $\partial, G /$ TOP], where I^{k} is the k-dimensional cube (with $k>0$). We also show that the Whitehead group $\mathrm{Wh}(\Gamma)$, the projective class group $\widetilde{K}_{0}(Z \Gamma)$, and the lower K groups $K_{-n}(Z \Gamma), n \geq 1$, are all isomorphic to the one element group. The higher K-groups $K_{n}(Z \Gamma), n \geq 0$, are computed up to rational isomorphism type. All of these results have previously been obtained by the authors in the case that the sectional curvature values of M are strictly negative (cf. [7, 8, 9, 10]).

In all the following results we let M denote a compact connected Riemannian manifold all of whose sectional curvature values are nonpositive, and we let Γ denote the fundamental group of M.

Theorem 1. If $h: N \rightarrow M$ is a homotopy equivalence from a compact closed manifold N, and if $\operatorname{dim}(M) \geq 5$, then there is a homotopy of h to a homeomorphism.

Let $\mathscr{P}(M)$ denote the semisimplicial space of stable topological pseudo-isotopies of M. For any stratified fibration $p: E \rightarrow B$ we let $\mathscr{P}(E ; p)$ denote the semisimplicial space of compactly supported stable topological pseudo-isotopies on E which have arbitrarily small control in B (defined in [23]). If $f: E \rightarrow M$ is a continuous map then denote by $F: \mathscr{P}(E ; p) \rightarrow \mathscr{P}(M)$ the map which is induced by f.

[^0]
[^0]: Received by the editors April 3, 1989 and, in revised form, June 27, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 18F25, 22E40, 57D50.

 Both authors were supported in part by the NSF.

