RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 21, Number 2, October 1989

ON SOLVABLE SUBGROUPS OF THE SYMMETRIC GROUP

YAKOV G. BERKOVICH

1. Introduction.. In this note we give exact values of certain invariants of the symmetric group S_{n} of degree n.

Let n be a positive integer, p a prime, $\sigma(G)$ the derived length and $\nu(G)$ the nilpotent length of a solvable group G. Let $\operatorname{SOLV}(n)$ denote the set of all solvable subgroups of S_{n} and put

$$
\begin{gathered}
\operatorname{SOLV}\left(n, p^{\prime}\right)=\{G \in \operatorname{SOLV}(n)|p \nmid| G \mid\}, \\
\sigma(n)=\max \{\sigma(G) \mid G \in \operatorname{SOLV}(n)\}, \\
\nu(n)=\max \{\nu(G) \mid G \in \operatorname{SOLV}(n)\}
\end{gathered}
$$

Similarly one defines $\sigma\left(n, p^{\prime}\right)$ and $\nu\left(n, p^{\prime}\right)$.
Let \mathbf{N} be the set of all nonnegative integers. For $t \in \mathbf{N}$ we put $s(t)=$ $\min \{m \in \mathbf{N} \mid \sigma(m)=t\}$ and $n(t)=\min \{m \in \mathbf{N} \mid \nu(m)=t\}$. For a partial ordered set L we denote by μL the set of all maximal elements in L. We put $\Sigma(t)=\{G \in \mu \operatorname{SOLV}(s(t)) \mid \sigma(G)=t\}$ and $\Sigma\left(t, p^{\prime}\right)=\{G \in$ $\left.\mu \operatorname{SOLV}\left(s\left(t, p^{\prime}\right), p^{\prime}\right) \mid \sigma(G)=t\right\}$. Similarly one defines $N(t)$ and $N\left(t, p^{\prime}\right)$.

We define the structure of all elements of the sets $\Sigma(t), \Sigma\left(t, p^{\prime}\right), N(t)$ and $N\left(t, p^{\prime}\right)$.

We assume that, as permutations groups, S_{m} has degree m, $\operatorname{AGL}(2,3)$ has degree 9 , the cyclic group $C(p)$ of order p has degree p, the groups $\operatorname{AGL}(1, p)$ and $\frac{1}{2} \operatorname{AGL}(1, p)$ (=the subgroup of index 2 in $\left.\operatorname{AGL}(1, p)\right)$ have degree p.

We say that a group W is of type $\left\{B_{1}^{k_{1}}, \ldots, B_{s}^{k_{s}}\right\}$ if W a wreath product of k_{1} copies of the permutation group B_{1}, k_{2} copies of the permutation group B_{2} and so on (the order of the factors is arbitrary).

2. Main results.

[^0]
[^0]: Received by the editors May 8, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 20B35; Secondary 20D10, 20D15.

