RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 21, Number 2, October 1989

ON SOLVABLE SUBGROUPS OF THE SYMMETRIC GROUP

YAKOV G. BERKOVICH

1. Introduction.. In this note we give exact values of certain invariants of the symmetric group S_n of degree n.

Let *n* be a positive integer, *p* a prime, $\sigma(G)$ the derived length and $\nu(G)$ the nilpotent length of a solvable group *G*. Let SOLV(*n*) denote the set of all solvable subgroups of S_n and put

SOLV
$$(n, p') = \{G \in \text{SOLV}(n) | p \nmid |G|\},\$$

 $\sigma(n) = \max\{\sigma(G) | G \in \text{SOLV}(n)\},\$
 $\nu(n) = \max\{\nu(G) | G \in \text{SOLV}(n)\}.$

Similarly one defines $\sigma(n, p')$ and $\nu(n, p')$.

Let N be the set of all nonnegative integers. For $t \in N$ we put $s(t) = \min\{m \in N | \sigma(m) = t\}$ and $n(t) = \min\{m \in N | \nu(m) = t\}$. For a partial ordered set L we denote by μL the set of all maximal elements in L. We put $\Sigma(t) = \{G \in \mu \text{ SOLV}(s(t)) | \sigma(G) = t\}$ and $\Sigma(t, p') = \{G \in \mu \text{ SOLV}(s(t, p'), p') | \sigma(G) = t\}$. Similarly one defines N(t) and N(t, p').

We define the structure of all elements of the sets $\Sigma(t)$, $\Sigma(t, p')$, N(t) and N(t, p').

We assume that, as permutations groups, S_m has degree m, AGL(2, 3) has degree 9, the cyclic group C(p) of order p has degree p, the groups AGL(1, p) and $\frac{1}{2}$ AGL(1, p) (=the subgroup of index 2 in AGL(1, p)) have degree p.

We say that a group W is of type $\{B_1^{k_1}, \ldots, B_s^{k_s}\}$ if W a wreath product of k_1 copies of the permutation group B_1 , k_2 copies of the permutation group B_2 and so on (the order of the factors is arbitrary).

2. Main results.

©1989 American Mathematical Society 0273-0979/89 \$1.00 + \$.25 per page

Received by the editors May 8, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 20B35; Secondary 20D10, 20D15.