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A -̂theory for C*-algebras is also known under the name of "noncommu
tative" topology. A C*-algebra is a Banach algebra that has the same ab
stract properties as the algebra &(X) of continuous complex-valued func
tions on a compact space X except for the fact that the multiplication is 
not necessarily commutative. 

Noncommutative C* -algebras arise naturally from group actions on 
topological spaces, foliated manifolds, pseudodifferential operators, etc., 
and they also formalize the noncommuting variables of quantum mechan
ics. 

Even if one is only interested in spaces, one often has to extend the 
frame to the noncommutative category as certain natural constructions in 
^-theory automatically lead to noncommutative algebras. One might go 
as far as to compare this to the passage from real to complex numbers in 
analysis. 


