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Why the need for generalized solutions of partial differential equations? 
It has been recognized that many equations of physics do not have clas
sical solutions (for instance shock wave solutions of systems of conser
vation laws). Distribution solutions—usually called "weak solutions"—of 
the model equation 

ut + uux = 0 
are defined as those integrable functions u which satisfy: V^ € W°°(R2) 
with compact support 

(1) J J ^u(xft)^(xft) + ^u2(xj)^zi//(xtt) 2 v ' Jdx 
dxdt = 0. 

In the case of linear equations a detailed theory has been developed [15, 
7]. However the situation is far from being satisfactory. Lewy [8] showed 
that the very simple linear equation 
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