COMPACT MANIFOLDS WITH A LITTLE NEGATIVE CURVATURE

K. D. ELWORTHY AND S. ROSENBERG

1. Bochner's Theorem states that a compact oriented Riemannian manifold (M, g) with positive Ricci curvature has $H^1(M; \mathbf{R}) = 0$. Myers' Theorem implies the stronger result that $\pi_1(M)$ is finite under the same hypothesis. Both theorems fail if the Ricci curvature is positive except on a set of arbitrarily small diameter, since every compact manifold admits such a metric of volume one. Nevertheless, we can extend these theorems and the Bochner Theorem for *p*-forms, yielding topological obstructions to manifolds admitting metrics with a little negative curvature.

2. Results for $H^1(M; \mathbb{R})$. The Laplacian on *p*-forms has the Weitzenböck decomposition $\Delta^p = \nabla^* \nabla + R^p$; here ∇ is the Levi-Civita connection and $R^p \in \text{End}(\Lambda^p T^*M)$ with $R^1 = \text{Ricci}$. We write $R^p(x) \ge R_0$ for $x \in M$ if the lowest eigenvalue of $R^p(x)$ is at least R_0 . In what follows, we normalize all metrics to have volume one.

THEOREM 1. Pick $R_0 > 0$ and K < 0. There exists $\varepsilon = \varepsilon(R_0, K, \dim M) > 0$ such that if $\operatorname{Ric}(x) \ge R_0$ except on a set A, with diameter $\operatorname{diam}(A) \le \varepsilon$, where $\operatorname{Ric}(x) \ge K$, then $H^1(M; \mathbf{R}) = 0$.

In other words, if the metric has a deep well of negative Ricci curvature, we may still conclude $H^1(M; \mathbf{R}) = 0$ provided the well is narrow enough. Notice that there is no restriction on the topology of A.

Theorem 1 is a consequence of the following weaker version about metrics with a shallow well of negative Ricci curvature.

THEOREM 1'. Pick $R_0 > 0$. There exists $\varepsilon' = \varepsilon'(R_0, \dim M) > 0$ and $\delta = \delta(R_0, \dim M) < 0$ such that if $\operatorname{Ric}(x) \ge R_0$ except on a set A, with $\operatorname{diam}(A) \le \varepsilon'$, where $\operatorname{Ric}(x) \ge \delta$, then $H^1(M; \mathbf{R}) = 0$.

We sketch a proof of Theorem 1'. By semigroup domination for the heat flow on one forms, it is enough to show that $\Delta^0 + \text{Ric}' > 0$, where Ric'(x) is the lowest eigenvalue of Ricci at x. By an elementary argument, we have

LEMMA 2. Let $V: M \to \mathbf{R}$ be continuous. If (i) $\int_M V d\operatorname{vol}(g) > 0$ and (ii) $\lambda_1 \ge -V_{\min} + \frac{\|V - V_{av}\|^2}{\int_M V}$,

then $\Delta^0 + V > 0$.

Received by the editors February 15, 1988 and, in revised form, July 7, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 53C20; Secondary 58G11, 58G32, 58C40.

The first author was partially supported by the SERC and the second author by the NSF.

©1989 American Mathematical Society 0273-0979/89 \$1.00 + \$.25 per page