ON SINGULAR HAMILTONIANS:
 THE EXISTENCE OF QUASI-PERIODIC SOLUTIONS AND NONLINEAR STABILITY

CHJAN C. LIM

In this note, we announce results concerning the existence of quasiperiodic solutions for a class of singular Hamiltonians, and the nonlinear stability of singularities (as opposed to equilibria). A third result concerns the existence of bounded, connected and open invariant sets in the neighborhood of singularities. Historically, the existence of quasi-periodic solutions and nonlinear stability of equilibria for Hamiltonian systems are established via the KAM theorems [A1, A2, M1, M2]. When the question of quasi-periodic behavior in the neighborhood of singularities is the issue (as in the restricted 3-body problem near one of the primaries), the singularity is transformed into an equilibrium by an appropriate regularization (cf. the classic papers [C and M3]). To the best of our knowledge, there is no regularization procedure for the class of singular Hamiltonians discussed here. We therefore adopt a different approach.

Existence of quasi-periodic solutions. We consider the Hamiltonian,

$$
\begin{equation*}
H\left(q_{1}, \ldots, q_{n} ; p_{1}, \ldots, p_{n}\right)=\sum_{j=1}^{m} K_{j} \log \left|f_{j}\left(z_{1}, \ldots, z_{n}\right)\right| \tag{1}
\end{equation*}
$$

with the following properties

$$
\begin{equation*}
z_{j}=q_{j}+i p_{j} \text { and } K_{j} \text { are real coefficients, } \tag{A}
\end{equation*}
$$

(B) $\quad f_{j}\left(z_{1}, \ldots, z_{n}\right)$ are entire functions of n complex variables,
(C) the zero level sets, $M_{j}=f_{j}^{-1}(0)$ are complex hyperplanes which intersect at a unique point, \mathbf{z}^{*} (without any loss in generality, $\mathbf{z}^{*}=\mathbf{0}$).

This class of Hamiltonians arise in several applications notably N-body problems. In these problems $m=N(N-1) / 2$, the number of edges in the complete graph consisting of N vertices; n equals $N-1$, the number of independent degrees of freedom after the usual reduction in the presence of translational symmetry.

[^0]
[^0]: Received by the editors February 8, 1988.
 1980 Mathematics Subject Classification (1985 Revision). Primary 34C28, 34D99, 70H05; Secondary 76C05, 70F10.

