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on the subject and at some of the additional references listed below or in the 
excellent bibliography at the end of Lehto's book. 
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The old order changes; classical divisions of mathematics into subject ar
eas of distinguishable type have been progressively refined and fragmented 
until the attempt to classify a research paper via the MR subject index ap
pears as a task of comparable size to understanding the results themselves. 
This Balkanisation process is compounded by an increasing—and no doubt 
welcome—tendency towards fédéralisation of the ideas and techniques which 
erodes and transcends even the ancient divides of algebra, analysis, and ge
ometry. 

How, for instance, should one approach Kleinian groups? As discrete sub
groups of the Lie group of complex two-by-two matrices, Kleinian groups 
fit naturally within at least four broad subject areas, reflecting their origins 
within the classical analysis, the underlying (abstract) group-theoretical struc
tures which they represent, their position within the deformation theory of 
discrete groups in general, and the topological connection with hyperbolic 
three-dimensional manifolds first noticed by Poincaré and recently brought 
back to prominence by Thurston's revolutionary ideas. None of which men
tions the specific and important links with number theory, algebraic groups, 
the geometry of algebraic curves and their moduli spaces, or the analogy with 


