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THE QUANTUM MECHANICAL SPHERICAL PENDULUM

R. CUSHMAN AND J. J. DUISTERMAAT

ABSTRACT. In this announcement we describe the asymptotic behav-
ior of the spectrum of the quantum mechanical spherical pendulum as
Planck’s constant tends to zero.

We begin by discussing

1. The classical spherical pendulum [6, 4]. As a Hamiltonian system
the spherical pendulum has a configuration space

S?={g=1(q1,92,93) ER*|1 =g} + &3 + &% = (g,9)}
and a phase space
T*S? = {(q,p) € R®* x R%|(g,q) =1, (g, p) = 0}.

The standard symplectic form Y5, dg; Adp; on R3 x R3 when restricted to
T*S? gives the canonical symplectic form on T*S%. The dynamics is given
by the Hamiltonian function

E:T*S* > R: (g,p) — (p,p) + g3

Since E is invariant under rotations about the g3 axis lifted to T*S?2, the
function
L:T*S?* - R: (¢,p) = q1P2 — G2P1

is an integral of the Hamiltonian vectorfield Xg. L is the g3-component of
angular momentum. Thus the flows ¢ and ¢f of Xg and X, respectively,
commute. Hence the spherical pendulum is completely integrable.

Consider the energy momentum mapping

&H . T*S?* - R2: (¢,p) — (E(q,p), L(g,p))

(see Figure 1). Suppose that (e,l) € %, the set of regular values of &4,
which is the shaded region in Figure 1 excluding (1,0) and boundary curves.
Then &# ~'(e,l) = E~'(e) N L~1(l) is a compact, connected, smooth, two-
dimensional submanifold of T*S2. On &# ~!(e,l) we have an R? action
defined by

®:R? x &M (e,l) » X (e, ): ((t1,t2),m) — Sp 0 dt.(m)
which is transitive. Therefore the isotropy group
P(e,l) = {(T1,T2) € R?*|$7, 0 6%, =idg g-1(e0) }
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