SINGULAR SOBOLEV CONNECTIONS WITH HOLONOMY

L. M. SIBNER AND R. J. SIBNER

We consider local Sobolev connections on $S U(2)$ bundles over the complement, in R^{4}, of a smoothly embedded compact 2 -manifold. Finite action implies that a holonomy condition is satisfied and we obtain an a priori estimate for the connection 1 -form in terms of curvature and the flat connection carrying the holonomy. The a priori estimate classifies the possible singularities in these connections by the set of flat connections. In a certain case, this leads to smoothness and extendability results.

Let N be a full 4 -dimensional neighborhood of the singular set S. The objects of study are connections $D=d+A$ defined on $S U(2)$ bundles over $X=N \backslash S$. We assume that $A \in H_{1, \text { loc }}^{2}(X)$ and that the action is finite, i.e., the curvature $F=d A+A \wedge A$ is in $L^{2}(N)$.

The following holonomy condition was first stated by Cliff Taubes. Choose coordinates (r, θ, u, v) with (u, v) coordinates on S and (r, θ) coordinates in a plane normal to S. Fixing u and v, and denoting by A_{θ} the θ component of A, the initial value problem for an $S U(2)$ valued function,

$$
\frac{d g_{r}}{d \theta}+A_{\theta} g_{r}=0, \quad g_{r}(0)=I
$$

has a unique solution $g_{r}(\theta)$, with $g_{r}(2 \pi)=J_{r} \in S U(2)$. The holonomy condition we require is

$$
\begin{equation*}
\lim _{r \rightarrow 0} J_{r}=J^{b} \text { exists. } \tag{H}
\end{equation*}
$$

This condition is gauge invariant up to conjugacy in $S U(2)$. Our results can be formulated in two theorems.

Theorem 1. If A and F are smooth on $N \backslash S$ and $F \in L^{2}(N)$, then (H) is satisfied for almost all u and v. Up to conjugacy, the limit is independent of u and v.

Next, assume (H) holds. Locally, the conjugacy class $\left[J^{\mathrm{b}}\right] \in S U(2)$ uniquely defines a flat connection $A^{b}=C d \theta$ with C a constant element of $s u(2)$ determined up to a similarity transformation. Our second result uses holonomy to obtain an a priori estimate. We denote by X_{0} and N_{0} the intersections of X and N with a small open set in R^{4} having nonvoid intersection with S.

[^0]
[^0]: Received by the editors February 23, 1988.
 1980 Mathematics Subject Classification (1985 Revision). Primary 35J60, 53C80.
 Research of the first author partially supported by NSF grant DMS-8501419.
 Research of the second author partially supported by NSF grant INT-8411481.

