ON THE LOCAL SEVERI PROBLEM

ROBERT TREGER

Introduction. We study plane curves with singularities. Let \mathbf{P}^N be the projective space parametrizing plane curves of degree n (N = n(n+3)/2). Let $V(n,g) \subset \mathbf{P}^N$ be the locus of reduced irreducible plane curves of degree n and (geometric) genus g, and $l \subset \mathbf{P}^2$ a fixed line. Following Zariski [7], we consider the subvariety $Z(n,g) \subset \overline{V(n,g)}$ of curves which contain l as a component. The purpose of this note is to study Z(n,g) and prove the following

THEOREM. Let $\mathscr{E}(n,g)$ be a branch of $\overline{V(n,g)}$ through a point of Z(n,g) corresponding to a reduced curve. Then the general members of $\mathscr{E}(n,g) \cap Z(n,g)$ have only nodes as singularities.

It is well known (cf. Severi $[5, \S{11}]$) that this Theorem implies the following fundamental result of Harris.

COROLLARY (HARRIS [3]). V(n,g) is irreducible.

In the case when $L \in \mathscr{E}(n,g) \cap Z(n,g)$ is a union of *n* distinct lines passing through a point, our theorem is a realization of Severi's attempt to prove that L can be regenerated to a reducible nodal curve of $\mathscr{E}(n,g)$ [5, §11, p. 344]. The idea of using decreasing induction on g and equations of curves in the proof was suggested in Zariski [7]. On the other hand, Harris [3] and Ran [4] use the degeneration method in their treatment of plane curves.

Proof of Theorem. We set d = (n-1)(n-2)/2 - g and $\nu(n,d) = \dim V(n,g) = 3n + g - 1$ ([5, §11], [6]). Let $\Sigma_{n,d} \subset \mathbf{P}^N \times \operatorname{Sym}^d(\mathbf{P}^2)$ be the closure of the locus of irreducible curves of degree n with d nodes and no other singularities, and π_N the projection to \mathbf{P}^N . Given a pair consisting of a reduced curve $E \in \overline{V(n,g)}$ and a branch of $\overline{V(n,g)}$ through the curve, one can define, via π_N , an element of $\operatorname{Sym}^d(\mathbf{P}^2)$, called the cycle of assigned singularities of the pair. Our basic tool is the dimension-theoretic characterization of maximal families of nodal curves by Arbarello and Cornalba [1] and Zariski [6] and its generalization by Harris [3, Proposition 2.1].

Let C be a general member of $\mathscr{E}(n,g) \cap Z(n,g)$. We will prove that C is nodal and all its unassigned nodes lie on l for every choice of a branch of $\mathscr{E}(n,g)$ through C.

LEMMA. For $d \leq 3$, $\Sigma_{n,d}$ is irreducible and unibranch.

PROOF OF THE LEMMA. Let Σ' , $\Sigma'' \subset \Sigma_{n,d}$ be components such that a general member of Σ' has d nodes in general position. A dimension count

Received by the editors December 16, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 14H10, 14H45.