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ON THE LOCAL SEVERI PROBLEM

ROBERT TREGER

Introduction. We study plane curves with singularities. Let PV be the
projective space parametrizing plane curves of degree n (N = n(n+3)/2). Let
V(n,g) C PV be the locus of reduced irreducible plane curves of degree n and
(geometric) genus g, and I C P? a fixed line. Following Zariski [7], we consider
the subvariety Z(n,g) C V(n,g) of curves which contain ! as a component.
The purpose of this note is to study Z(n,g) and prove the following

THEOREM. Let &(n,g) be a branch of V(n,g) through a point of Z(n,g)
corresponding to a reduced curve. Then the general members of &€ (n,g) N
Z(n,g) have only nodes as singularities.

It is well known (cf. Severi [5, §11]) that this Theorem implies the following
fundamental result of Harris.

COROLLARY (HARRIS [3]). V(n,g) ts irreducible.

In the case when L € &(n,g)NZ(n,g) is a union of n distinct lines passing
through a point, our theorem is a realization of Severi’s attempt to prove that
L can be regenerated to a reducible nodal curve of &(n,g) [5, §11, p. 344].
The idea of using decreasing induction on ¢ and equations of curves in the
proof was suggested in Zariski [7]. On the other hand, Harris [3] and Ran [4]
use the degeneration method in their treatment of plane curves.

Proof of Theorem. We set d = (n — 1)(n — 2)/2 — g and v(n,d) =
dimV (n,g) = 3n+ g — 1 ([5, §11], [6]). Let £, 4 C PV x Sym?(P?) be the
closure of the locus of irreducible curves of degree n with d nodes and no
other singularities, and 7 the projection to PV. Given a pair consisting of a
reduced curve E € V (n, g) and a branch of V' (n, g) through the curve, one can
define, via 7y, an element of Symd (P?), called the cycle of assigned singular-
ities of the pair. Our basic tool is the dimension-theoretic characterization of
maximal families of nodal curves by Arbarello and Cornalba [1] and Zariski
(6] and its generalization by Harris [3, Proposition 2.1].

Let C be a general member of &(n,g) N Z(n,g). We will prove that C
is nodal and all its unassigned nodes lie on ! for every choice of a branch of
& (n, g) through C.

LEMMA. Ford <3, L, 4 is irreducible and unibranch.

PROOF OF THE LEMMA. Let ¥/, ¥ C X, 4 be components such that
a general member of ¥’ has d nodes in general position. A dimension count
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