STRUCTURE THEORY AND REFLEXIVITY OF CONTRACTION OPERATORS

B. CHEVREAU, G. EXNER, AND C. PEARCY

1. Introduction. Let \mathscr{H} be a separable, infinite-dimensional, complex Hilbert space, and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded linear operators on \mathscr{H} . The purpose of this note is to announce several new, and rather general, sufficient conditions that a contraction T in $\mathscr{L}(\mathscr{H})$ be reflexive, and, at the same time, to give various characterizations of the class of those contractions that possess an analytic invariant subspace (definition given below). Complete proofs and other results will appear in [7]. The principal new idea involved is a considerable improvement of the main construction of §3 of [9]. The new reflexivity theorems also depend on techniques from [9, 3, 1, and 4], and yield, in particular, the following improvement of the main result of [4].

THEOREM 1.1. If T is a contraction in $\mathscr{L}(\mathscr{H})$ such that the spectrum $\sigma(T)$ of T contains the unit circle **T**, then either T is reflexive or T has a nontrivial hyperinvariant subspace.

If $T \in \mathscr{L}(\mathscr{H})$ we denote by \mathscr{A}_T the dual algebra generated by T (i.e., \mathscr{A}_T is the smallest unital subalgebra of $\mathscr{L}(\mathscr{H})$ containing T that is closed in the weak^{*} topology (which accrues to $\mathscr{L}(\mathscr{H})$ by virtue of its being the dual space of the Banach space $\mathscr{C}_1(\mathscr{H})$ of trace-class operators)). It follows that \mathscr{A}_T is the dual space of $Q_T = \mathscr{C}_1(\mathscr{H})/^{\perp}\mathscr{A}_T$, where ${}^{\perp}\mathscr{A}_T$ is the preannihilator of \mathscr{A}_T in $\mathscr{C}_1(\mathscr{H})$, under the pairing

$$\langle A, [L] \rangle = \operatorname{tr}(AL), \qquad A \in \mathscr{A}_T, \ L \in \mathscr{C}_1(\mathscr{H}),$$

where [L] denotes the element of the quotient space Q_T containing the traceclass operator L. Thus, if x and y are vectors in \mathscr{H} , then $[x \otimes y]$ denotes the element of Q_T containing the rank-one operator $x \otimes y$. The dual algebra \mathscr{A}_T is said to have property $(\mathbf{A}_{1,\aleph_0})$ if for any sequence $\{[L_j]\}_{j=1}^{\infty}$ of elements from Q_T there exist vectors x and $\{y_j\}_{j=1}^{\infty}$ in \mathscr{H} satisfying

(1)
$$[L_j] = [x \otimes y_j], \qquad j = 1, 2, \dots$$

If, moreover, there exists $\rho \geq 1$ (independent of the family $\{[L_j]\}$) with the property that for every $s > \rho$, the vectors $\{x\}$ and $\{y_j\}$ satisfying (1) can also be chosen to satisfy

$$||x|| \le \left(s \sum_{k=1}^{\infty} ||[L_k]||\right)^{1/2}, \qquad ||y_j|| \le (s||[L_j]||)^{1/2}, \qquad j = 1, 2, \dots,$$

then we say that \mathscr{A}_T has property $(\mathbf{A}_{1,\aleph_0}(\rho))$.

©1988 American Mathematical Society 0273-0979/88 \$1.00 + \$.25 per page

Received by the editors September 15, 1987 and, in revised form, December 16, 1987. 1980 Mathematics Subject Classification (1985 Revision). Primary 47A15; Secondary 47A20.