STRUCTURE THEORY AND REFLEXIVITY OF CONTRACTION OPERATORS

B. CHEVREAU, G. EXNER, AND C. PEARCY

1. Introduction. Let \mathscr{H} be a separable, infinite-dimensional, complex Hilbert space, and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded linear operators on \mathscr{H}. The purpose of this note is to announce several new, and rather general, sufficient conditions that a contraction T in $\mathscr{L}(\mathscr{H})$ be reflexive, and, at the same time, to give various characterizations of the class of those contractions that possess an analytic invariant subspace (definition given below). Complete proofs and other results will appear in [7]. The principal new idea involved is a considerable improvement of the main construction of $\S 3$ of [9]. The new reflexivity theorems also depend on techniques from $[9,3,1$, and 4$]$, and yield, in particular, the following improvement of the main result of [4].

THEOREM 1.1. If T is a contraction in $\mathscr{L}(\mathscr{H})$ such that the spectrum $\sigma(T)$ of T contains the unit circle \mathbf{T}, then either T is reflexive or T has a nontrivial hyperinvariant subspace.

If $T \in \mathscr{L}(\mathscr{H})$ we denote by \mathscr{A}_{T} the dual algebra generated by T (i.e., \mathscr{A}_{T} is the smallest unital subalgebra of $\mathscr{L}(\mathscr{H})$ containing T that is closed in the weak* topology (which accrues to $\mathscr{L}(\mathscr{H})$ by virtue of its being the dual space of the Banach space $\mathscr{\mathscr { C }}_{1}(\mathscr{H})$ of trace-class operators)). It follows that \mathscr{A}_{T} is the dual space of $Q_{T}=\mathscr{C}_{1}(\mathscr{H}) /{ }^{\perp} \mathscr{A}_{T}$, where ${ }^{\perp} \mathscr{A}_{T}$ is the preannihilator of \mathscr{A}_{T} in $\mathscr{C}_{1}(\mathscr{H})$, under the pairing

$$
\langle A,[L]\rangle=\operatorname{tr}(A L), \quad A \in \mathscr{A}_{T}, L \in \mathscr{C}_{1}(\mathscr{H})
$$

where $[L]$ denotes the element of the quotient space Q_{T} containing the traceclass operator L. Thus, if x and y are vectors in \mathscr{H}, then $[x \otimes y]$ denotes the element of Q_{T} containing the rank-one operator $x \otimes y$. The dual algebra \mathscr{A}_{T} is said to have property $\left(\mathbf{A}_{1, \aleph_{0}}\right)$ if for any sequence $\left\{\left[L_{j}\right]\right\}_{j=1}^{\infty}$ of elements from Q_{T} there exist vectors x and $\left\{y_{j}\right\}_{j=1}^{\infty}$ in \mathscr{H} satisfying

$$
\begin{equation*}
\left[L_{j}\right]=\left[x \otimes y_{j}\right], \quad j=1,2, \ldots \tag{1}
\end{equation*}
$$

If, moreover, there exists $\rho \geq 1$ (independent of the family $\left\{\left[L_{j}\right]\right\}$) with the property that for every $s>\rho$, the vectors $\{x\}$ and $\left\{y_{j}\right\}$ satisfying (1) can also be chosen to satisfy

$$
\|x\| \leq\left(s \sum_{k=1}^{\infty}\left\|\left[L_{k}\right]\right\|\right)^{1 / 2}, \quad\left\|y_{j}\right\| \leq\left(s\left\|\left[L_{j}\right]\right\|\right)^{1 / 2}, \quad j=1,2, \ldots
$$

then we say that \mathscr{A}_{T} has property $\left(\mathbf{A}_{1, \aleph_{0}}(\rho)\right)$.

[^0]
[^0]: Received by the editors September 15, 1987 and, in revised form, December 16, 1987.
 1980 Mathematics Subject Classification (1985 Revision). Primary 47A15; Secondary 47A20.

