BI-INVARIANT SCHWARTZ MULTIPLIERS AND LOCAL SOLVABILITY ON NILPOTENT LIE GROUPS

JOE W. JENKINS

Let X denote a finite-dimensional vector space with a fixed positive definite inner product, and let $\mathscr{S}(X)$ denote the Schwartz space on X. We let $\mathscr{MS}(X)$ denote the space of continuous endomorphisms of $\mathscr{S}(X)$ that commute with the action of X on $\mathscr{S}(X)$. The elements of $\mathscr{MS}(X)$ are given by convolution by tempered distributions; i.e., for $E \in \mathscr{MS}(X)$ there is a $D_E \in \mathscr{S}^*(X)$ such that $Ef(x) = \langle D_E, l_x \check{f} \rangle := D_E * f(x)$, where $\check{f}(x) = f(-x)$ and $l_x f(y) = f(y - x)$. Conversely, if $D \in \mathscr{S}^*(X)$, then one can easily see that $E_D: f \to D * f$ is a mapping of $\mathscr{S}(X)$ into the smooth functions on X that commutes with translation. Schwartz [S] shows that $E_D \in \mathscr{MS}(X)$ if and only if \hat{D} , the Fourier transform of D, is given by a smooth function on X^* which has polynomial bounds on all derivatives. In this note we announce analogues of these results for arbitrary nilpotent Lie groups. Complete proofs will appear elsewhere.

Let N denote a connected, simply connected nilpotent Lie group, with Lie algebra n. The exponential mapping, exp: $n \to N$, is a diffeomorphism, and in terms of the corresponding coordinates left and right translation on N are polynomial mappings. Thus, if $\mathscr{S}(N)$ denotes the image under composition with exp of $\mathscr{S}(n)$, the right and left action of N on $\mathscr{S}(N)$ are continuous endomorphisms, where $\mathscr{S}(N)$ is topologized so that composition with exp is an isomorphism from $\mathscr{S}(n)$ to $\mathscr{S}(N)$. We denote by $\mathscr{S}^*(N)$ the dual of $\mathscr{S}(N)$, the space of tempered distributions on N.

For $f \in \mathscr{S}(N)$, the Fourier transform of f, \hat{f} , is defined on \mathfrak{n}^* , the dual of \mathfrak{n} , by

$$\hat{f}(\xi) = \int_{\mathfrak{n}} f(\exp X) e^{-2\pi i \langle \xi, X \rangle} \, dX.$$

One has that $f \to \hat{f}$ is an isomorphism from $\mathscr{S}(N)$ onto $\mathscr{S}(\mathfrak{n}^*)$. For $D \in \mathscr{S}^*(N)$, \hat{D} is defined on $\mathscr{S}(\mathfrak{n}^*)$ by $\langle \hat{D}, f \rangle = \langle D, \hat{f} \circ \log \rangle$, where log denotes the inverse of exp.

Let Ad^{*} denote the coadjoint representation of N on n^{*}. A tempered distribution D on n^{*} is said to be Ad^{*}-invariant if $\langle D, f \circ \text{Ad}^* x \rangle = \langle D, f \rangle$ for all $x \in N$ and $f \in \mathscr{S}(\mathfrak{n}^*)$. A tempered distribution D on N is said to be bi-invariant if $\langle D, \mathfrak{r}_{x^{-1}}f \rangle = \langle D, l_x f \rangle$ for all $f \in \mathscr{S}(N)$, where $\mathfrak{r}_x f(y) = f(yx)$ and $l_x f(y) = f(x^{-1}y)$ for all $x, y \in N$. A straightforward computation shows that an element $D \in \mathscr{S}(N)$ is bi-invariant if and only if \widehat{D} is Ad^{*}-invariant.

©1988 American Mathematical Society 0273-0979/88 \$1.00 + \$.25 per page

Received by the editors January 22, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 22E30, 43A55.

This research supported in part by a grant from the National Science Foundation.