CONSTRAINED POISSON ALGEBRAS AND STRONG HOMOTOPY REPRESENTATIONS

JIM STASHEFF

A Poisson algebra is a commutative associative algebra A with an (anticommutative) bracket $\{$,$\} which is a derivation with respect to the commutative$ product: $\{f, g h\}=\{f, g\} h+f\{g, h\}$. Constraints constitute a distinguished set of elements ϕ_{α} of A. They are said to be first class constraints if the ideal I they generate (under the commutative product) is closed under Poisson bracket; I need not be an ideal with respect to $\{$,$\} . This structure arises in$ physics with $A=C^{\infty}(W)$ for some symplectic manifold W. The constraints determine a subvariety $V \subset W$, the zero locus of I, and a foliation \mathscr{F} of V, by the flows determined by the derivations $\{$,$\} . One wishes to compute the$ ad I-invariant functions on V, which would give $C^{\infty}(V / \mathscr{F})$ were the foliation to give a submersion $V \rightarrow V / \mathscr{F}$ onto a manifold.

In a remarkable series of papers, Fradkin, Batalin and Vilkovisky [0-3, 6] and then Henneaux [10] developed a method for calculating the ad I-invariant functions in $C^{\infty}(V)=A / I$ without passing through the quotient A / I. The method appeared to depend on solving certain specific, complicated equations and initially was applicable only locally and when I was a regular ideal.

Using the techniques of 'homological perturbation theory' $[\mathbf{7}, \mathbf{8}, \mathbf{9}]$, I am able to justify their machinery in terms of the algebra alone, including, with Henneaux [11], the case of nonregular ideals [0]. The idea for this approach owes a great deal to the paper of Browning and McMullan [4], which revealed the structure of a multicomplex implicit in Fradkin et al and Henneaux.

The Lie algebra cohomology $H^{0}(I, A / I)$ computes the ad I-invariant functions on V, but physics requires a description in terms of A and prefers to use Φ, the linear span of the constraints ϕ_{α}, rather than the full ideal I. An obvious step algebraically is to replace A / I by a free resolution over A. To combine this with the restriction to $\Phi \subset I$ is more subtle.

The Lie algebra cohomology of Cartan, Chevalley and Eilenberg [5] begins with the algebra $\operatorname{Alt}(I, A / I)$ of alternating multilinear functions on I with values in A / I and a differential Alt \rightarrow Alt (which increases the number of variables by one) given in terms of the bracket on I and the adjoint representation of I on A / I : For example, for $h: I \rightarrow A$, we have

$$
(\delta h)(f, g)=h(\{f, g\})-\{f, h(g)\}+\{g, h(f)\} .
$$

The subalgebra $\operatorname{Alt}_{A}(I, A / I)$ of A-multilinear functions is in fact a subcomplex with the same H^{0}. (This is isomorphic to the complex which defines

[^0]
[^0]: Received by the editors July 1, 1987 and, in revised form, November 23, 1987.
 1980 Mathematics Subject Classification (1985 Revision). Primary 18G10, 17B55, 81E13; Secondary $58 \mathrm{H} 10,70 \mathrm{H} 99,81 \mathrm{C} 99$.

 Research supported by the NSF and the Institute for Advanced Study.

