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CONSTRAINED POISSON ALGEBRAS AND STRONG 
HOMOTOPY REPRESENTATIONS 

JIM STASHEFF 

A Poisson algebra is a commutative associative algebra A with an (anticom-
mutative) bracket { , } which is a derivation with respect to the commutative 
product: {f,gh} = {f,g}h + /{g^h}. Constraints constitute a distinguished 
set of elements (j)a of A. They are said to be first class constraints if the ideal 
ƒ they generate (under the commutative product) is closed under Poisson 
bracket; I need not be an ideal with respect to { , }. This structure arises in 
physics with A = C°°(W) for some symplectic manifold W. The constraints 
determine a subvariety V C W, the zero locus of ƒ, and a foliation SF of V, 
by the flows determined by the derivations { , }. One wishes to compute the 
ad /-invariant functions on V, which would give C°°(V^/^) were the foliation 
to give a submersion V —• V/^ onto a manifold. 

In a remarkable series of papers, Fradkin, Batalin and Vilkovisky [0-3, 6] 
and then Henneaux [10] developed a method for calculating the ad /-invariant 
functions in C°°(V) = A/1 without passing through the quotient A/L The 
method appeared to depend on solving certain specific, complicated equations 
and initially was applicable only locally and when / was a regular ideal. 

Using the techniques of 'homological perturbation theory' [7, 8, 9], I am 
able to justify their machinery in terms of the algebra alone, including, with 
Henneaux [11], the case of nonregular ideals [0]. The idea for this approach 
owes a great deal to the paper of Browning and McMullan [4], which revealed 
the structure of a multicomplex implicit in Fradkin et al and Henneaux. 

The Lie algebra cohomology H°{I,A/I) computes the ad/-invariant func­
tions on V, but physics requires a description in terms of A and prefers to 
use $, the linear span of the constraints (j)a, rather than the full ideal / . An 
obvious step algebraically is to replace A/1 by a free resolution over A. To 
combine this with the restriction to $ C / is more subtle. 

The Lie algebra cohomology of Cartan, Chevalley and Eilenberg [5] be­
gins with the algebra Alt( / ,A//) of alternating multilinear functions on / 
with values in A/I and a differential Alt —* Alt (which increases the num­
ber of variables by one) given in terms of the bracket on / and the adjoint 
representation of / on A/1: For example, for h : I —• A, we have 

(6h)(f, g) = h({f, g}) - {ƒ, h(g)} + {g, h(f)}. 

The subalgebra Alt ,4 (/, A/1) of ^-multilinear functions is in fact a sub-
complex with the same H°. (This is isomorphic to the complex which defines 
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