THE NUMBER OF EQUATIONS NEEDED TO DEFINE AN ALGEBRAIC SET

GENNADY LYUBEZNIK

Let B be a commutative Noetherian ring, X = Spec B the associated affine scheme, $I \subset B$ an ideal and $V = V(I) \subset X$ the closed subset defined by I.

DEFINITION. Elements $f_1, \ldots, f_s \in I$ define V set-theoretically (equivalently, V is defined set-theoretically by s equations $f_1 = 0, f_2 = 0, \ldots, f_s = 0$) if $\sqrt{(f_1, \ldots, f_s)} = \sqrt{I}$.

Hilbert's Nullstellensatz implies that in the case when B is a finitely generated algebra over an algebraically closed field k, this definition agrees with the usual one, i.e., all f_1, \ldots, f_s vanish at a k-rational point if and only if it belongs to V. In the sequel "defined" always means "defined set-theoretically".

The question we are dealing with here concerns the minimum number of equations needed to define a given $V \subset X$. A classical result that goes back to L. Kronecker [**Kr**] says that if B is n-dimensional, then n+1 equations would suffice for every $V \subset X$. Our first theorem describes those $V \subset X$ which can be defined by n equations.

THEOREM A. Let k be an algebraically closed field, X a smooth affine n-dimensional variety over k with coordinate ring B, and $V = V' \cup P_1 \cup P_2 \cup \cdots \cup P_r$ an algebraic subset of X = Spec B, where V' is the union of irreducible components of positive dimensions and P_1, P_2, \ldots, P_r some isolated closed points (which do not belong to V'). Then V can be defined by n equations if and only if one of the following conditions holds.

(i) r = 0, i.e., V consists only of irreducible components of positive dimension.

(ii) V' is empty, i.e., V consists only of closed points and there exist positive integers n_1, n_2, \ldots, n_r such that $n_1P_1 + n_2P_2 + \cdots + n_rP_r = 0$ in $A_0(X)$.

(iii) V' is nonempty, $r \ge 1$ and there exist positive integers n_1, n_2, \ldots, n_r such that $n_1P_1 + n_2P_2 + \cdots + n_rP_r$ belongs to the image of the natural map $A_0(V') \rightarrow A_0(X)$ induced by the inclusion $V' \rightarrow X$.

Here $A_0(\cdot)$ stands for the group of zero-cycles modulo rational equivalence **[Fu]**.

SKETCH OF PROOF. Our proof consists of three steps. In Step 1 we construct an ideal $I \subset B$ such that \sqrt{I} is the defining ideal of V, and in addition I has some other special properties. In Step 2 we, in a special way, pick some ideals Q_1, \ldots, Q_n such that $\sqrt{Q_i}$ is a maximal ideal containing I for each i and J/J^2 is *n*-generated, where $J = I \cap Q_1 \cap \cdots \cap Q_n$. In Step 3 we

©1988 American Mathematical Society 0273-0979/88 \$1.00 + \$.25 per page

Received by the editors November 5, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 14C99, 14M10, 14C25; Secondary 13B25, 13C10.