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and Bibliography of Riemannian Geometry, compiled by Bérard and Berger, 
with a partial update covering the period since 1982. 

The book is not, and is not intended to be, a broad overview of the by 
now very large topics of direct and inverse problems in Riemannian geometry. 
It is, however, a clear account of the contributions along the above lines of 
the author and his collaborators, and some of its material is not in print 
elsewhere. Altogether, within the framework of its aims, the book conveys 
a clear account of this interesting work, and comprises, together with the 
recent book of Chavel [CH] on related topics, a very worthwhile addition to 
the literature of spectral geometry. 
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A function is arithmetic if it is defined on the positive integers. In this 
review arithmetic functions will be real or complex valued. The scope of this 
definition is rather wide, and functions of number theoretic interest generally 
have some structure attached to them. An example is the Dirichlet divisor 
function rf(n), which counts the number of distinct divisors of the integer n. 
Its values on the first ten integers are 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, and appear 
roughly increasing. Considered over the range 205 < n < 215 however, we 
have 4, 6, 10, 4, 16, 2, 6, 4, 4, 4. It is characteristic of functions of number 
theoretic interest that their successive values sail so erratically about. I begin 
with a snapshot history of the methods devised in Analytic Number Theory 
to come to grips with this phenomenon. As in many a family album, some 
important relations do not get into the picture. 

According to Dirichlet, it was Gauss who considered the mean-value 

(1) M(g,x) = x-1J29(n) 
n<x 


