DYSON'S CRANK OF A PARTITION

GEORGE E. ANDREWS AND F. G. GARVAN

1. Introduction. In [3], F. J. Dyson defined the rank of a partition as the largest part minus the number of parts. He let $N(m, t, n)$ denote the number of partitions of n of rank congruent to m modulo t, and he conjectured

$$
\begin{array}{ll}
N(m, 5,5 n+4)=\frac{1}{5} p(5 n+4), & 0 \leq m \leq 4 \\
N(m, 7,7 n+5)=\frac{1}{7} p(7 n+5), & 0 \leq m \leq 6 \tag{1.2}
\end{array}
$$

where $p(n)$ is the total number of partitions of $n[1$, Chapter 1$]$. These conjectures were subsequently proved by Atkin and Swinnerton-Dyer [2].

Dyson [3] went on to observe that the rank did not separate the partition of $11 n+6$ into 11 equal classes even though Ramanujan's congruence

$$
\begin{equation*}
p(11 n+6) \equiv 0 \quad(\bmod 11) \tag{1.3}
\end{equation*}
$$

holds. He was thus led to conjecture the existence of some other partition statistic (which he called the crank); this unknown statistic should provide a combinatorial interpretation of $\frac{1}{11} p(11 n+6)$ in the same way that (1.1) and (1.2) treat the primes 5 and 7.

In $[\mathbf{4}, \mathbf{5}]$, one of us was able to find a crank relative to vector partitions as follows:

For a partition π, let $\#(\pi)$ be the number of parts of π and $\sigma(\pi)$ be the sum of the parts of π (or the number π is partitioning) with the convention $\#(\phi)=\sigma(\phi)=0$ for the empty partition ϕ, of 0 . Let
$V=\left\{\left(\pi_{1}, \pi_{2}, \pi_{3}\right) \mid \pi_{1}\right.$ is a partition into distinct parts,

$$
\left.\pi_{2}, \pi_{3} \text { are unrestricted partitions }\right\} .
$$

We shall call the elements of V vector partitions. For $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ in V we define the sum of parts, s, a weight, ω, and a crank, r, by

$$
\begin{gather*}
s(\vec{\pi})=\sigma\left(\pi_{1}\right)+\sigma\left(\pi_{2}\right)+\sigma\left(\pi_{3}\right), \tag{1.4}\\
\omega(\vec{\pi})=(-1)^{\#\left(\pi_{1}\right)}, \tag{1.5}\\
r(\vec{\pi})=\#\left(\pi_{2}\right)-\#\left(\pi_{3}\right) . \tag{1.6}
\end{gather*}
$$

We say $\vec{\pi}$ is a vector partition of n if $s(\vec{\pi})=n$. For example, if

$$
\vec{\pi}=(5+3+2,2+2+1,2+1+1)
$$

Received by the editors August 13, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 11P76.
First author partially supported by National Science Foundation Grant DMS 8503324.

