Projective representations of finite groups, by Gregory Karpilovsky, Marcel Dekker, Inc., New York and Basel, 1985, xiii +644 pp., \$89.75. ISBN 0-8247-7313-6

Projective representations take their name from projective geometry. To be specific, let G be a finite group, K a field, and V a finite-dimensional vector space over K. Let h be a homomorphism of G into the projective general linear group PGL (V), i.e., the group of all projective transformations of the projective space whose points are the one-dimensional subspaces of V. Since many of the finite simple groups are defined as subgroups of groups PGL (V) for finite K, their natural injections into PGL (V) furnish important examples. PGL (V) can be identified with the quotient group of the group $\mathrm{GL}(V)$ of all invertible linear transformations of V by the normal subgroup Z consisting of scalar multiples of the identity $1_{G L(V)}$ by the elements of $K^{\times}=K-\{0\}$. Accordingly, h can be studied as follows: for each $g \in G$ choose a representative $\rho(g)$ of the coset $h(g) Z=h(g) K^{\times}$; then ρ is a mapping of G into $\mathrm{GL}(V)$ such that

$$
\begin{equation*}
\rho\left(g_{1}\right) \rho\left(g_{2}\right)=\alpha\left(g_{1}, g_{2}\right) \rho\left(g_{1} g_{2}\right) \tag{1}
\end{equation*}
$$

for some mapping α of $G \times G$ to K^{\times}; we can suppose that

$$
\begin{equation*}
\rho\left(1_{G}\right)=1_{\mathrm{GL}(V)} . \tag{2}
\end{equation*}
$$

Then ρ can be studied in place of h; this replaces a projective situation by a more familiar linear one, though at the price that ρ depends on arbitrary choices. Any mapping ρ of G to $\mathrm{GL}(V)$ that satisfies (1) and (2) for any α is called a projective representation of G; if α is specified, ρ is called an α-representation.

Many examples can be constructed as follows: let

$$
\begin{equation*}
1 \rightarrow A \rightarrow H \xrightarrow{f} G \rightarrow 1 \tag{3}
\end{equation*}
$$

be a central extension, i.e., an epimorphism $H \rightarrow G$ of finite groups with ker $f \cong A$ contained in the center of H; thus $G \cong H / A$ if we identify $\operatorname{ker} f$ and A. (The group H is also called a central extension of G.) For each $g \in G$ choose an inverse image $\mu(g) \in H$ such that $f(\mu(g))=g$, with $\mu\left(1_{G}\right)=1_{H}$. Then for each linear representation r of H, the rule

$$
\begin{equation*}
\rho(g)=r(\mu(g)) \tag{4}
\end{equation*}
$$

defines a projective representation ρ of G. For example, if H is either of the nonabelian groups of order $8, A$ its center, and f the natural map to $G=H / A$, the 2-dimensional irreducible complex representation of H yields a projective representation of the Klein four-group. Central extensions play an important role in the proof of the classification of finite simple groups [2; 7, pp. 295-303]; furthermore, attempts to use the classification to prove a conjecture for arbitrary finite groups sometimes reduce the conjecture to the

