ASYMPTOTICS OF SMALL EIGENVALUES OF RIEMANN SURFACES

MARC BURGER

Recently there has been a great deal of interest in geometric bounds on small eigenvalues of the Laplace operator on a Riemann surface [S.W.Y, D.P.R.S.]. Here we determine the precise asymptotic behaviour of these small eigenvalues. Let S_{δ} be a compact Riemann surface of genus $g \geq 2$ whose first k nonzero eigenvalues $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k}$ are small, i.e., $\lambda_{k} \leq \delta$ and $\lambda_{k+1} \geq c_{1}$. Then by [S.W.Y.] there exists a constant $a=a(g)>$ 0 such that the closed geodesics $\gamma_{1} \cdots \gamma_{r}$ of length less than $a \cdot \delta$ separate S_{δ} into $k+1$ pieces S_{1}, \ldots, S_{k+1} and all other closed geodesics of S_{δ} have length greater than $a(g)$. Let Λ be the graph whose vertices are the pieces S_{i}. Suppose vertex S_{i} has mass $v_{i}=\operatorname{vol}\left(S_{i}\right)$ and the length $L_{i j}$ of an edge joining S_{i} to S_{j} is the total length of the geodesics contained in $S_{i} \cap S_{j}$. Furthermore, let $0<\lambda_{1}(\Lambda) \leq \cdots \leq \lambda_{k}(\Lambda)$ be the spectrum of the quadratic form $\sum\left(F\left(S_{i}\right)-F\left(S_{j}\right)\right)^{2} L_{i j}$ with respect to the norm $\sum F\left(S_{i}\right)^{2} v_{i}$. Then one has

ThEOREM 1.

$$
\lim _{\delta \rightarrow 0} \frac{\lambda_{j}\left(S_{\delta}\right)}{\lambda_{j}(\Lambda)}=\frac{1}{\pi} \quad \text { for all } 1 \leq j \leq k
$$

This convergence is uniform for all surfaces S_{δ} with $\lambda_{k+1}\left(S_{\delta}\right) \geq c_{1}$ and fixed genus.

REMARK. The fact that $\lim \sup _{\delta \rightarrow 0} \lambda_{j}\left(S_{\delta}\right) / \lambda_{j}(\Lambda) \leq 1 / \pi$ follows easily from [C.CdV]. This paper also shows the convergence of this ratio in the case that the lengths $l\left(\gamma_{i}\right)$ all have the same behaviour near zero, i.e. $l\left(\gamma_{i}\right)=d_{i} \varepsilon$ for $\varepsilon \rightarrow 0$, and fixed d_{i}.

Sketch of Proof. Complete $\gamma_{1} \cdots \gamma_{r}$ to a set of geodesics $\gamma_{1} \cdots \gamma_{3 g-3}$, giving a decomposition of S into Y-pieces with length $l\left(\gamma_{i}\right) \leq L_{g}$, a constant depending only on g (see [Bu2, §13]). Then using a modified version of an argument of $[\mathbf{B 1}]$ we show that $\lambda_{j} \cdot(1+o(\sqrt{\delta})) \geq \pi^{-1} \lambda_{j}(\Gamma)$, where Γ is the graph of the Y-pieces, and the length of an edge corresponding to a small geodesic is $l(\gamma)$. The proof of this also uses the asymptotic of the first nonzero eigenvalue of $Y_{1} \cup Y_{2}$ for the Neumann problem, where Y_{1}, Y_{2} are Y-pieces, $Y_{1} \cap Y_{2}=\gamma$ and $l(\gamma)$ is small. This can be deduced from [C.CdV], because there is only one small geodesic separating $Y_{1} \cup Y_{2}$. To finish the proof we have then to compare $\lambda_{j}(\Gamma)$ with $\lambda_{j}(\Lambda)$. To do this we consider Λ to be the graph of the connected components of Γ after removing the small edges of Γ.

[^0]
[^0]: Received by the editors February 10, 1987.
 1980 Mathematics Subject Classification (1985 Revision). Primary 53C22, 58G25; Secondary 30 F 99.

