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For (M, g) a compact Riemannian manifold, we consider the spectra of 
the Laplace-Beltrami operator and of the Schrödinger operator "Laplacian 
plus potential" acting on L2 (M, g). Two Riemannian manifolds are said to 
be isospectral if their associated Laplacians have the same spectra, and two 
potentials on the same Riemannian manifold are said to be isospectral if 
the associated Schrödinger operators have the same spectra. Generalizing 
methods of Sunada [S] and Brooks [B], we give a fairly general technique for 
constructing isospectral metrics and potentials. In the case of metrics, our 
method unifies the various methods used previously by numerous authors to 
construct isospectral metrics and allows us to construct many new examples; 
in the case of potentials, we obtain many new examples of continuous families 
of isospectral, noncongruent potentials. 

In all the examples known of isospectral closed manifolds, the manifolds 
have a common Riemannian cover. Thus, they are of the form (I \ \M, #), 
i = 1,2, where (M, g) is a Riemannian manifold and each I \ is a discrete group 
acting freely and properly discontinuously by isometries on (M, g). Moreover, 
with one exception (noted below), there exists a bijection between Ti and 
1̂2 such that corresponding elements are conjugate in the full isometry group 
I(M). It is not known whether these conditions are sufficient for the quotient 
manifolds to be isospectral. Sunada [S] proved under these conditions that 
if Ti and T2 are both contained in a finite subgroup G of I{M) which acts 
freely on M and if corresponding elements of Ti and Y 2 are conjugate within 
G, then the manifolds are isospectral. (Of course, if the groups Ti and 1^ are 
conjugate, then the manifolds are isometric.) 

Before stating our first theorem, we recall that any Lie group G which 
admits a uniform discrete subgroup is unimodular. For 7 G T, the centralizer 
C(7, T) is a uniform discrete subgroup of the centralizer C(7, G), so C(7, G) is 
also unimodular. Given any conjugacy class of unimodular subgroups of G, we 
can define a Haar measure on each subgroup in such a way that if K = aHa"1, 
then the conjugation by a is a measure-preserving transformation from H to 
K. In the following theorem, we assume Haar measures have been so chosen 
on C(7i, G). For any group H and any element h G i7, we denote by [h]n 
the conjugacy class of h in i7, and we denote by [H] the set of all conjugacy 
classes of elements of H, so [H\H G [H]. 
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