BMO ON THE BERGMAN SPACES OF THE CLASSICAL DOMAINS

C. A. BERGER, L. A. COBURN AND K. H. ZHU

Let Ω be a bounded symmetric (Cartan) domain with its Harish-Chandra realization in \mathbf{C}^n [T]. For dv the usual Euclidean volume measure on $\mathbf{C}^n = \mathbf{R}^{2n}$, normalized so that $v(\Omega) = 1$, we consider the Hilbert space of square-integrable complex-valued functions $L^2 = L^2(\Omega, dv)$ and the Bergman subspace $H^2 = H^2(\Omega)$ of holomorphic functions in L^2 . The self-adjoint projection from L^2 onto H^2 is denoted by P. For f, g in L^2 , we consider the multiplication operator M_f on L^2 given by $M_f g = fg$ and the Hankel operator H_f on L^2 given by $H_f = (I - P)M_f P$. For f in L^2 , these operators are only densely defined and may be unbounded. The commutator $[M_f, P] = M_f P - PM_f$ is densely defined on L^2 and may also be unbounded. From the equations

$$[M_f, P] = H_f - H_{\overline{f}}^*, \quad (I - P)[M_f, P] = H_f, \quad [M_f, P](I - P) = -H_{\overline{f}}^*,$$

it follows that $[M_f, P]$ is a bounded operator if and only if $H_f, H_{\overline{f}}$ are bounded. Moreover, $[M_f, P]$ is a compact operator if and only if $H_f, H_{\overline{f}}$ are compact.

In earlier work $[\mathbf{BCZ}]$, it was shown that for f in $L^{\infty}(\Omega)$, the algebra of bounded measurable functions on Ω , $[M_f, P]$ is compact if and only if f has vanishing mean oscillation at the boundary $\partial\Omega$, where oscillation is defined in terms of the Bergman metric on Ω . In this note, we announce the companion result: For f in L^2 , $[M_f, P]$ is bounded if and only if f is of "bounded mean oscillation on Ω ", where oscillation is defined as in $[\mathbf{BCZ}]$. The space of such functions is denoted by $\mathrm{BMO}(\Omega)$. We also obtain the expected result that: For f in L^2 , $[M_f, P]$ is compact if and only if f is in the subspace $\mathrm{VMO}_{\partial}(\Omega)$ of functions which have vanishing mean oscillation at the boundary $\partial\Omega$. Our results are analogous to known results for arc-length measure on the unit circle $[\mathbf{G}, \mathbf{p}, 278]$ and demonstrate the value of the Bergman metric in function-theoretic analysis on the classical domains.

Let $K(\cdot, a)$ be the Bergman reproducing kernel in $H^2(\Omega)$ for evaluation at $a \in \Omega$. For

$$k_a(\cdot) = K(a, a)^{-1/2} K(\cdot, a),$$

we define the Berezin transform of f in L^2 [BCZ] by

$$\tilde{f}(a) = \langle fk_a, k_a \rangle$$

where $\langle \cdot, \cdot \rangle$ is the usual L^2 inner product. For typographical reasons, we write the Berezin transform of $|f|^2$ as $(|f|^2)^{\sim}$. It follows from known properties of

Research supported by National Science Foundation grants.

Received by the editors January 20, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 32M15; Secondary 32A40, 30C40.