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BMO ON THE BERGMAN SPACES 
OF THE CLASSICAL DOMAINS 

C. A. BERGER, L. A. COBURN AND K. H. ZHU 

Let Ü be a bounded symmetric (Cartan) domain with its Harish-Chandra 
realization in C n [T]. For dv the usual Euclidean volume measure on C n = 
R2 n , normalized so that v(Q) = 1, we consider the Hubert space of square-
integrable complex-valued functions L2 = L2(Q,dv) and the Bergman sub-
space H2 = H2(Q) of holomorphic functions in L2. The self-adjoint projection 
from L2 onto H2 is denoted by P. For ƒ, g in L2, we consider the multiplica
tion operator Mf on L2 given by Mjg = f g and the Hankel operator Hf on 
L2 given by H f = (I — P)MfP. For ƒ in L2, these operators are only densely 
defined and may be unbounded. The commutator [Mf,P] = MfP — PMf is 
densely defined on L2 and may also be unbounded. From the equations 

[Mf,P] =Hf- Hj, (I - P)[Mf, P) = Hf, [Mf, P](I -P) = -Hj, 

it follows that [Mf, P] is a bounded operator if and only if H f, Hj are bounded. 
Moreover, [Mf, P] is a compact operator if and only if i / / , Hj are compact. 

In earlier work [BCZ], it was shown that for ƒ in L°°(n), the algebra 
of bounded measurable functions on Q, [Mf,P] is compact if and only if 
ƒ has vanishing mean oscillation at the boundary dQ, where oscillation is 
defined in terms of the Bergman metric on Q. In this note, we announce 
the companion result: For ƒ in L2, [M/,P] is bounded if and only if f is of 
ubounded mean oscillation on Ü ", where oscillation is defined as in [BCZ]. The 

space of such functions is denoted by BMO(H). We also obtain the expected 
result that: For ƒ in L2, [M/, P] is compact if and only if f is in the subspace 
VMOa(H) of functions which have vanishing mean oscillation at the boundary 
dfl. Our results are analogous to known results for arc-length measure on the 
unit circle [G, p. 278] and demonstrate the value of the Bergman metric in 
function-theoretic analysis on the classical domains. 

Let K(-,a) be the Bergman reproducing kernel in H2(Q) for evaluation at 
a e H. For 

fca(.) = / f(a ,a)-1 /2 / f ( . ,a) , 

we define the Berezin transform of ƒ in L2 [BCZ] by 

/(a) = (fka,ka) 

where (•, •) is the usual L2 inner product. For typographical reasons, we write 
the Berezin transform of | / |2 as ( | / |2)~. It follows from known properties of 
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