REPRESENTATIONS OF MOD p LIE ALGEBRAS

ERIC M. FRIEDLANDER AND BRIAN J. PARSHALL

Let G be a semisimple, simply connected algebraic group defined over an algebraically closed field k of characteristic p > 0. Because any rational G-module inherits the structure of a restricted module (in the sense of [4, p. 188]) for the Lie algebra $\mathcal G$ of G, the representation theory of $\mathcal G$ has primarily focused on the study of restricted modules. We outline here our recent investigations of the more general—that is, not necessarily restricted—represention theory of $\mathcal G$. Details will appear in [3].

We approach the representation theory of \mathcal{G} through that of a family of finite-dimensional quotient algebras of the universal enveloping algebra $U(\mathcal{G})$ of \mathcal{G} . As described below, these algebras are parametrized by characters on a certain abelian subalgebra \mathcal{O} of $U(\mathcal{G})$. Because the restricted enveloping algebra $V(\mathcal{G})$ appears as a distinguished member of this family (the others being thought of as "deformations" of $V(\mathcal{G})$), a better understanding of the representation theory of these algebras may lead to a clearer picture of that of $V(\mathcal{G})$.

For a restricted Lie algebra \mathcal{G} , we employ the central subalgebra $\mathcal{O} \subset U(\mathcal{G})$ considered by Zassenhaus in his foundational paper [10]. Namely, \mathcal{O} is the image of the semilinear monomorphism $S^*(\mathcal{G}) \to U(\mathcal{G})$ defined on the symmetric algebra $S^*(\mathcal{G})$ of \mathcal{G} by sending $X \in \mathcal{G}$ to $X^p - X^{[p]}$. Using the Jordan decomposition of the dual \mathcal{G}^* given in [7], we obtain properties such as "regular", "semisimple", or "nilpotent" for characters $\chi \colon \mathcal{O} \to k$ whenever $\mathcal{G} = \mathrm{Lie}(G)$.

PROPOSITION 1. Let $\mathcal G$ be a restricted Lie algebra of dimension d and let $\chi\colon\mathcal O\to k$ be a character with associated one-dimensional $\mathcal O$ -module k_χ . Then $A_\chi\equiv U(\mathcal G)\otimes_{\mathcal O} k_\chi$ is a Frobenius algebra of dimension p^d . Moreover, for each irreducible $\mathcal G$ -module M, there is a unique character $\chi\colon\mathcal O\to k$ such that the action of $U(\mathcal G)$ on M factors through A_χ .

Of course, if $\chi=0$ then $A_{\chi}\cong V(\mathcal{G})$, the restricted enveloping algebra of \mathcal{G} .

One easily proves that $\operatorname{Ext}_{U(\mathcal{G})}(M,M')=0$ whenever M is an A_{χ} -module, M' is an $A_{\chi'}$ -module, and $\chi\neq\chi'$. On the other hand, nontrivial computations are facilitated by the following spectral sequence.

PROPOSITION 2. Let \mathcal{G} and A_{χ} be as in Proposition 1. If M and N are two A_{χ} -modules with M finite-dimensional, then there is a natural spectral

Received by the editors November 14, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 17B50; Secondary 17B10, 17B56.

Research supported by the National Science Foundation.