EXPONENTIAL SUMS AND NEWTON POLYHEDRA

ALAN ADOLPHSON AND STEVEN SPERBER

Let p be a prime number and let k denote the field of $q=p^{a}$ elements. Fix a nontrivial additive character $\Psi: k \rightarrow \mathbf{Q}\left(\varsigma_{p}\right)^{\times}$. Given a variety V of dimension n and a regular function f on V, with both V and f defined over k, one can define an exponential sum

$$
\begin{equation*}
S(V, f)=\sum_{x \in V(k)} \Psi(f(x)) \tag{1}
\end{equation*}
$$

where $V(k)$ denotes the k-rational points of V. It is a classical problem to find conditions on V and f that will imply a good estimate for $|S(V, f)|$. By "good estimate" we mean an inequality of the form

$$
\begin{equation*}
|S(V, f)| \leq C \sqrt{q}^{n} \tag{2}
\end{equation*}
$$

where C is a constant depending on V and f but not on q.
Deligne's fundamental theorem [3] reduces the problem of estimating the archimedean size of exponential sums to the problem of computing certain associated l-adic cohomology groups. Let \mathbf{A}^{n} denote affine n-space over k and let $\left(\mathbf{G}_{m}\right)^{n}$ denote the product of n copies of the multiplicative group \mathbf{G}_{m} over k. The purpose of this note is to report on some general criteria, when $V=\left(\mathbf{G}_{m}\right)^{n}$ or \mathbf{A}^{n}, that allow us to calculate this cohomology and hence obtain sharp archimedean estimates for the corresponding exponential sums. These same criteria allow us to obtain apparently sharp p-adic estimates for the exponential sums as well, although space limitations prevent us from describing them here. Connections between the p-adic theory and Newton polyhedra already appear in [$\mathbf{7}$ and 8].

A novel feature of our work is the use of Dwork cohomology [4, 5] to compute l-adic cohomology. The results of this note have not so far been obtainable by purely l-adic methods. Complete proofs and references will appear elsewhere. We are indebted to B. Dwork and N. Katz for many helpful discussions.

1. Statement of results. Let k_{r} denote the extension of k of degree r and let $\operatorname{Tr}_{r}: k_{r} \rightarrow k$ be the trace map. Let \bar{k} denote the algebraic closure of k. Set

$$
\begin{equation*}
S_{r}(V, f)=\sum_{x \in V\left(k_{r}\right)} \Psi\left(\operatorname{Tr}_{r} f(x)\right) \tag{3}
\end{equation*}
$$

[^0]
[^0]: Received by the editors November 1, 1986.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11L40; Secondary 14F20, 14F30.

 First author partially supported by NSF Grant No. DMS-8401723; second author partially supported by NSF Grant No. DMS-8301453.

