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MORSE THEORY FOR FIXED POINTS 
OF SYMPLECTIC DIFFEOMORPHISMS 

ANDREAS FLOER 

ABSTRACT. We prove the following special case of the Arnold conjec
ture on the fixed points of an exact deformation <p of a compact closed 
symplectic manifold P: If n2(P) = 0 and all fixed points of <p are non-
degenerate, then their number is greater than or equal to the sum of 
the Betti numbers of P with respect to Z2 coefficients. 

Let P be a symplectic manifold, i.e. P is a smooth manifold equipped with 
a closed and nondegenerate 2-form a;. Then we can assign to each smooth 
function 

(1) H:P X R - + R ; H{x,t) = Ht{x) 

a family Xt of vector fields on P defined by <*;(•, Xt) = dHt. This vector 
field is called the (exact) Hamiltonian vector field associated with the (time-
dependent) Hamiltonian H. If P is compact, then the differential equation 

(2) d ^ H ' t ( x ) = xt(VHM) 

with initial condition <PH,O(X) = x defines a family of smooth difïeomorphisms 
of P, which also preserve the symplectic structure, i.e. for each t € R w e have 
<plu) = uj. In fact, the set 

(3) D = {<pH,t\ teRandHe C°°{P x R)} 

of exact difïeomorphisms turns out to be a subgroup of the group of symplectic 
difïeomorphisms on P. 

Since each <p € D is homotopic to the identity, the Lefschetz fixed point 
theorem implies that if all fixed points x of <p are nondegenerate in the sense 
that 

(4) det(D<p(x) - id) ^ 0, 

then the sum of the signs of (4) over all fixed points of <p is equal to the 
Euler characteristic x(P)- In particular, if all fixed points are nondegenerate, 
their number must be equal to or greater than the absolute value of x(P)-
It has been conjectured by V. Arnold that a stronger result holds for exact 
difïeomorphisms: the number of fixed points of each <p G D should satisfy 
estimates similar to those obtained by Morse theory for the number of critical 
points of a smooth function on P. 
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