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STABLE HARMONIC 2-SPHERES IN SYMMETRIC SPACES 

F. BURSTALL, J. RAWNSLEY AND S. SALAMON 

A map <j>: (M, g) -» ( TV, h) of Riemannian manifolds is harmonic if it ex-
tremizes the energy E: C°° (M, N) —• R given (for compact M) by 

TO = \ I l̂ l'vol. 
* J M 

A harmonic map 0 is said to be stable if the second variation of E at (j> is 
positive semidefinite. That is: for all smooth variations <j)t G C7°°(M, N) with 
0o = 0 we have 

d2/dt2E(<j>t)\t=0 > 0. 
Of particular interest is the case where M is the sphere S2 and N is 

a Riemannian symmetric space G/K. In this setting harmonic maps are 
branched minimal immersions, or the finite action solutions of the Euclidean 
nonlinear cr-model studied by physicists (see e.g. [20] and references cited 
therein). In the case G/K is Hermitian symmetric it follows from an argu
ment of Lichnerowicz [9] that any holomorphic map is energy minimizing in 
its homotopy class and hence stable. The same is true of antiholomorphic 
(or -holomorphic) maps. The iholomorphic maps are the instantons of the 
nonlinear tr-model, and it is important to know if these are the only stable 
solutions. This is clearly not the case, as one sees by taking G/K to be a 
product of Hermitian symmetric spaces and by taking a map which is holo
morphic into one factor and -holomorphic into the other. However, this is 
the only way a stable map can fail to be ± holomorphic, as the following 
theorem shows. 

THEOREM 1. Let <j>\ S2 —• G/K be a stable harmonic map into an irre
ducible Hermitian symmetric space. Then <j> is ±holomorphic. 

This generalizes a result of Siu and Yau [16], who obtained Theorem 1 for 
the complex projective spaces as targets. 

If the target G/K is a general symmetric space <j> can always be lifted 
to a map into the simply connected covering space. A simply connected 
symmetric space then splits as a product of irreducible spaces with <\> given 
by a harmonic map into each factor. As noncompact factors have nonpositive 
curvature the component of <j> going into such a factor must be constant (by 
the results of Eells and Sampson [2], or more simply by the maximum principle 
[4]), which reduces us to the consideration of compact irreducible symmetric 
spaces. Moreover </> is stable if and only if all its components are. We can show 
that stable harmonic maps into irreducible compact Riemannian symmetric 
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