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BRAIDS, HYPERGEOMETRIC FUNCTIONS, AND LATTICES 

G. D. MOSTOW 

1. Braids. Let Ll9 L2 be two parallel lines in the plane y = 0 of (x, y, z) 
space, Lx at z = rx and L2 at z — r2. Let P/ = (/,0, rx), Ô,-= 0\0, r2), 

A braided n-path is a set of « paths ct(t) in R3 (i = 1 , . . . , n) satisfying 
(1) c,(0 = (*,(>), MO, 0> ' i < * < r2, c ^ ) = P„ C/(r2) e { & , . . ,Ô„}-
(2) The paths do not intersect. 

Two braided «-paths are regarded as equivalent if and only if it is possible to 
deform the one configuration into the other respecting conditions (1) and (2) 
throughout the deformation; note that one does permit rv r2 to vary so long as 
rx < r2 is respected. Thus (a) and (b) in Figure 1 represent the same braid. By 
definition, a braid is an equivalence class of braided «-paths. 
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FIGURE 1. 

Two braids A and B can be multiplied: B • A is the braid obtained by first 
braiding A then B, and adjusting the domain of the parameter t so that it 
changes without interruption, i.e., by bringing the end line of A and initial Une 
of B together and then erasing them. 
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