ON DISCRETE CHAMBER-TRANSITIVE AUTOMORPHISM GROUPS OF AFFINE BUILDINGS

W. M. KANTOR, R. A. LIEBLER AND J. TITS

1. Introduction. Let Δ be the affine building of a simple adjoint algebraic group \mathcal{G} of relative rank ≥ 2 over a locally compact local field K. Let Aut Δ (resp. $\Sigma \operatorname{Aut} \Delta$) denote the group of type-preserving (resp. of all) automorphisms of Δ . Note that $\Sigma \operatorname{Aut} \Delta$ contains the group $\mathcal{G}(K)$ of K-rational points of \mathcal{G} . We will be interested in discrete subgroups of Aut Δ which are chamber-transitive on Δ . It is extremely rare that such groups exist and, as can therefore be expected, exceptions are interesting phenomena; our purpose is to list them all (see the theorem below). In order to describe them we must first introduce some notation.

Let f be a quadratic form in n variables over \mathbf{Q}_p with coefficients in Z. We let $P\Omega(f, \mathbf{Z}[1/p])$ denote the intersection $PSO(f, \mathbf{Q}_p)' \cap PGL(n, \mathbf{Z}[1/p])$ within $PGL(n, \mathbf{Q}_p)$, and similarly $PGO(f, \mathbf{Z}[1/p]) = PGO(f, \mathbf{Q}_p) \cap PGL(n, \mathbf{Z}[1/p])$. In the following list, Γ will always be a chamber-transitive subgroup of Aut Δ . The fundamental quadratic form (over Z) of the root lattice of type A_n, B_n , E_n , normalized so that the long roots have squared length 2, will be denoted by a_n, b_n, e_n , respectively; note that b_n is $\sum_{i=1}^{n} x_i^2$.

(i) Let $f = e_8, b_7, a_6, b_6, e_6$, or a_5 , and let Δ be the affine building of PSO (f, \mathbf{Q}_2) . Here Γ can be any group between $\Gamma_{\min} = P\Omega(f, \mathbf{Z}[1/2])$ and $\Gamma_{\max} = PGO(f, \mathbf{Z}[1/2]) \cap \text{Aut }\Delta$. The quotient $\Gamma_{\max}/\Gamma_{\min}$ is elementary abelian of order 1, 1, 1, 4, 2, or 2, respectively, and Γ_{\max} is generated by Γ_{\min} and reflections.

(ii) Let $f = b_5, e_6$, or $b'_6 = \sum_1^5 x_i^2 + 3x_6^2$, and let Δ be the building of PSO (f, \mathbf{Q}_3) . The group $\Gamma_{\max}(f) = PGO(f, \mathbf{Z}[1/3]) \cap \operatorname{Aut} \Delta$ has 3, 5, or 9 conjugacy classes of chamber-transitive subgroups Γ . Passage mod 2 maps $\Gamma_{\max}(b_5)$ onto the symmetric group S_5 , and the preimages in $\Gamma_{\max}(b_5)$ of S_5 , A_5 , or a group of order 20 form the 3 desired conjugacy classes of groups Γ . The forms e_6 and b'_6 are rationally equivalent, and hence the buildings they define over \mathbf{Q}_3 are the "same"; with suitable identifications of buildings and groups, $\Gamma^{\flat} = \Gamma_{\max}(e_6) \cap \Gamma_{\max}(b'_6)$ has index 27 in $\Gamma_{\max}(e_6)$ and index 2 in $\Gamma_{\max}(e_6)$ of the 5 different classes of flag-transitive subgroups of PGO(5,3) (cf. [S]) form the 5 desired conjugacy classes of groups Γ , exactly 3 of which have members in Γ^{\flat} . The 6 remaining conjugacy classes of chamber-transitive subgroups of $\Gamma_{\max}(b'_6)$ not having members in $\Gamma_{\max}(e_6)$ consist of groups Γ of Γ^{\flat} , where r is the reflection $x_6 \mapsto -x_6$.

1980 Mathematics Subject Classification (1985 Revision). Primary 20G25, 20H15.

Received by the editors May 21, 1986.

^{©1987} American Mathematical Society 0273-0979/87 \$1.00 + \$.25 per page