ON DISCRETE CHAMBER-TRANSITIVE AUTOMORPHISM GROUPS OF AFFINE BUILDINGS

W. M. KANTOR, R. A. LIEBLER AND J. TITS

1. Introduction. Let Δ be the affine building of a simple adjoint algebraic group \mathcal{G} of relative rank ≥ 2 over a locally compact local field K. Let Aut Δ (resp. Σ Aut Δ) denote the group of type-preserving (resp. of all) automorphisms of Δ. Note that Σ Aut Δ contains the group $\mathcal{G}(K)$ of K-rational points of \mathcal{G}. We will be interested in discrete subgroups of Aut Δ which are chamber-transitive on Δ. It is extremely rare that such groups exist and, as can therefore be expected, exceptions are interesting phenomena; our purpose is to list them all (see the theorem below). In order to describe them we must first introduce some notation.

Let f be a quadratic form in n variables over \mathbf{Q}_{p} with coefficients in \mathbf{Z}. We let $\mathbf{P} \Omega(f, \mathbf{Z}[1 / p])$ denote the intersection $\operatorname{PSO}\left(f, \mathbf{Q}_{p}\right)^{\prime} \cap \operatorname{PGL}(n, \mathbf{Z}[1 / p])$ within $\operatorname{PGL}\left(n, \mathbf{Q}_{p}\right)$, and similarly $\operatorname{PGO}(f, \mathbf{Z}[1 / p])=\operatorname{PGO}\left(f, \mathbf{Q}_{p}\right) \cap \operatorname{PGL}(n, \mathbf{Z}[1 / p])$. In the following list, Γ will always be a chamber-transitive subgroup of Aut Δ. The fundamental quadratic form (over Z) of the root lattice of type A_{n}, B_{n}, E_{n}, normalized so that the long roots have squared length 2 , will be denoted by a_{n}, b_{n}, e_{n}, respectively; note that b_{n} is $\sum_{1}^{n} x_{i}^{2}$.
(i) Let $f=e_{8}, b_{7}, a_{6}, b_{6}, e_{6}$, or a_{5}, and let Δ be the affine building of $\operatorname{PSO}\left(f, \mathbf{Q}_{\mathbf{2}}\right)$. Here Γ can be any group between $\Gamma_{\min }=\mathrm{P} \Omega(f, \mathbf{Z}[1 / 2])$ and $\Gamma_{\max }=\operatorname{PGO}(f, \mathbf{Z}[1 / 2]) \cap$ Aut Δ. The quotient $\Gamma_{\max } / \Gamma_{\min }$ is elementary abelian of order $1,1,1,4,2$, or 2 , respectively, and $\Gamma_{\max }$ is generated by $\Gamma_{\min }$ and reflections.
(ii) Let $f=b_{5}, e_{6}$, or $b_{6}^{\prime}=\sum_{1}^{5} x_{i}^{2}+3 x_{6}^{2}$, and let Δ be the building of $\operatorname{PSO}\left(f, \mathbf{Q}_{3}\right)$. The group $\Gamma_{\max }(f)=\operatorname{PGO}(f, \mathbf{Z}[1 / 3]) \cap$ Aut Δ has 3,5 , or 9 conjugacy classes of chamber-transitive subgroups Γ. Passage mod 2 maps $\Gamma_{\max }\left(b_{5}\right)$ onto the symmetric group S_{5}, and the preimages in $\Gamma_{\max }\left(b_{5}\right)$ of S_{5}, A_{5}, or a group of order 20 form the 3 desired conjugacy classes of groups Γ. The forms e_{6} and b_{6}^{\prime} are rationally equivalent, and hence the buildings they define over \mathbf{Q}_{3} are the "same"; with suitable identifications of buildings and groups, $\Gamma^{b}=\Gamma_{\max }\left(e_{6}\right) \cap \Gamma_{\max }\left(b_{6}^{\prime}\right)$ has index 27 in $\Gamma_{\max }\left(e_{6}\right)$ and index 2 in $\Gamma_{\max }\left(b_{6}^{\prime}\right)$. Passage mod 2 maps $\Gamma_{\max }\left(e_{6}\right)$ onto $\operatorname{PGO}(5,3)$, and the preimages in $\Gamma_{\max }\left(e_{6}\right)$ of the 5 different classes of flag-transitive subgroups of $\operatorname{PGO}(5,3)$ (cf. $[\mathrm{S}]$) form the 5 desired conjugacy classes of groups Γ, exactly 3 of which have members in Γ^{b}. The 6 remaining conjugacy classes of chamber-transitive subgroups of $\Gamma_{\max }\left(b_{6}^{\prime}\right)$ not having members in $\Gamma_{\max }\left(e_{6}\right)$ consist of groups having index 1 or 2 in $\langle\Gamma, r\rangle$ for one of the chamber-transitive subgroups Γ of Γ^{b}, where r is the reflection $x_{6} \mapsto-x_{6}$.

