MONOPOLES ON ASYMPTOTICALLY EUCLIDEAN 3-MANIFOLDS

ANDREAS FLOER

ABSTRACT. We consider a generalization of Yang-Mills-Higgs theory on Euclidean \mathbb{R}^3 to connected sums of \mathbb{R}^3 with compact closed 3-manifolds.

In this note, we describe progress in Yang-Mills-Higgs theory on 3-dimensional Riemannian manifolds. In particular, we are interested in the set of minima of the Yang-Mills action

(1)
$$\mathfrak{A}(A,\Phi) = \int_M (|F_A(x)|^2 + |\nabla_A \Phi(x)|^2) \, d\mu(x),$$

where the "Higgs field" Φ is a section of a metric vector bundle E over M and A is a linear connection on E preserving the metric. For simplicity, we will restrict ourselves to the case where $E = \operatorname{ad}(P)$ is the adjoint bundle of an SU₂-principal bundle P over M.

The functional \mathfrak{A} has been studied in great detail in the case where M is the Euclidean \mathbb{R}^3 , see [8]. We recall here briefly the main results: The length of the Higgs field Φ of any finite action configuration $c = (A, \Phi)$ obtains in some sense an asymptotic value m(c) at infinity. For each m > 0, the space of finite action configurations c with m(c) = m decomposes into a family of components indexed by a "topological charge" k. On each of these components, the minima of the action functional (1) can be shown to be solutions of the Bogomolny equation

(2)
$$\mathfrak{b}_{\pm}(c) = \nabla_A \Phi \mp {}^*F_A = 0$$

with the sign equal to the sign of k. Since reversing the sign of Φ changes the sign of k while leaving \mathfrak{A} invariant, we can restrict ourselves to the case k > 0 and write $\mathfrak{b} = \mathfrak{b}_+$. The set of gauge equivalence classes of solutions of (2), also called monopoles, is a smooth manifold \mathcal{M}_k of dimension 4k. It can be described by means of algebraic geometry, see [7 and 3]. One usually considers the (4k - 1)-dimensional submanifolds \mathcal{M}_k^m of monopoles [c] with fixed "mass" m(c) = m. In fact, one can without loss of generality set m = 1, since a scaling involving a dilation of \mathbb{R}^3 shows that $\mathcal{M}_k^m \cong \mathcal{M}_k^1$ for all m > 0. In order to generalize these ideas, we replace \mathbb{R}^3 by an asymptotically

In order to generalize these ideas, we replace \mathbb{R}^3 by an asymptotically flat manifold M, see [9]. This means that M is the connected sum of \mathbb{R}^3 with a compact manifold, equipped with a metric which at the end of Mis a perturbation of the Euclidean metric in a certain sense. Since in this

©1987 American Mathematical Society 0273-0979/87 \$1.00 + \$.25 per page

Received by the editors July 28, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53C05; Secondary 57M99.