ARGUESIAN LATTICES WHICH ARE NOT LINEAR

MARK D. HAIMAN

ABSTRACT. A linear lattice is one representable by commuting equivalence relations. We construct a sequence of finite lattices A_n $(n \ge 3)$ with the properties: (i) A_n is not linear, (ii) every proper sublattice of A_n is linear, and (iii) any set of generators for A_n has at least n elements. In particular, A_n is then Arguesian for $n \ge 7$. This settles a question raised in 1953 by Jónsson.

1. Introduction. A lattice L is *linear* if it is representable by commuting equivalence relations. Jónsson [6] showed that any such lattice is Arguesian. Numerous equivalent forms of the Arguesian law are now known; it is a strong condition with important applications in coordinatization theory [1, 2]. Nevertheless, the question raised by Jónsson, whether every Arguesian lattice is linear, has remained open until now.

Here we describe an infinite family $\{A_n\}$ $(n \ge 3)$ of nonlinear lattices, Arguesian for $n \ge 7$ (and possibly for $n \ge 4$), settling Jónsson's question in the negative. Actually, we obtain more: a specific infinite sequence of identities strictly between Arguesian and linear, and a proof that the universal Horn theory of linear lattices is not finitely based.

2. The lattices A_n . Let $n \ge 3$. In what follows, all indices are modulo n, i.e., x_{i+1} means x_0 when i = n-1, etc. Let L_n be the lattice of all subspaces of a vector space v (dim v = 2n) over a prime field **K** with at least 3 elements. Let $\{\alpha_0, \ldots, \alpha_{n-1}, \beta_0, \ldots, \beta_{n-1}\}$ be a basis of v. Let

(1)
$$m = \langle \alpha_0, \dots, \alpha_{n-1} \rangle, \quad q_i = \langle \{\alpha_j | j \neq i \} \rangle, \quad p_i = q_i \wedge q_{i+1},$$

 $r_i = m \lor \langle \beta_i \rangle, \quad s_i = r_{i-1} \lor r_i,$

where $\langle \cdots \rangle$ denotes linear span. Let

where $[x, y] = \{z | x \le z \le y\}.$

 $A_n \subset L_n$ is a sublattice; the intervals in the union (2) are its maximal complemented intervals, or *blocks*; they are the blocks of a tolerance relation on A_n [5]; as such, the set S of blocks acquires a lattice structure; specifically, $0_S = [0, m], 1_S = [m, v], a_i = [p_i, r_i]$ are atoms, $b_i = [q_i, s_i]$ are coatoms, and $a_i < b_i, b_{i+1}$ defines the order relation.

Let \overline{m} (dim $\overline{m} = n$) be another vector space, with basis { $\overline{\alpha}_0, \ldots, \overline{\alpha}_{n-1}$ }. Define $\overline{p}_i, \overline{q}_i$ by analogy with (1). Let $F = \bigcup_i [p_i, v]$; $F \subset \tilde{A}_n$ is an order filter. Within $F, \bigcup_i [p_i, m]$ is an order ideal. Set up a "twisting" isomorphism

1980 Mathematics Subject Classification (1985 Revision). Primary 06C05.

Received by the editors March 25, 1986.

^{©1987} American Mathematical Society 0273-0979/87 \$1.00 + \$.25 per page