ARGUESIAN LATTICES WHICH ARE NOT LINEAR

MARK D. HAIMAN

ABSTRACT. A *linear* **lattice is one representable by commuting equiv**alence relations. We construct a sequence of finite lattices A_n ($n \geq 3$) with the properties: (i) A_n is not linear, (ii) every proper sublattice **of** *An* **is linear, and (iii) any set of generators for** *An* **has at least** *n* elements. In particular, A_n is then Arguesian for $n \geq 7$. This settles a **question raised in 1953 by Jónsson.**

1. Introduction. A lattice *L* is *linear* if it is representable by commuting equivalence relations. Jónsson [6] showed that any such lattice is Arguesian. Numerous equivalent forms of the Arguesian law are now known; it is a strong condition with important applications in coordinatization theory [1, 2]. Nevertheless, the question raised by Jónsson, whether every Arguesian lattice is linear, has remained open until now.

Here we describe an infinite family $\{A_n\}$ ($n \geq 3$) of nonlinear lattices, Arguesian for $n \geq 7$ (and possibly for $n \geq 4$), settling Jónsson's question in the negative. Actually, we obtain more: a specific infinite sequence of identities strictly between Arguesian and linear, and a proof that the universal Horn theory of linear lattices is not finitely based.

2. The lattices A_n . Let $n \geq 3$. In what follows, all indices are modulo n, i.e., x_{i+1} means x_0 when $i = n-1$, etc. Let L_n be the lattice of all subspaces of a vector space $v(\dim v = 2n)$ over a prime field **K** with at least 3 elements. Let $\{\alpha_0,\ldots,\alpha_{n-1},\beta_0,\ldots,\beta_{n-1}\}$ be a basis of v. Let

$$
(1) \qquad m = \langle \alpha_0, \ldots, \alpha_{n-1} \rangle, \qquad q_i = \langle \{ \alpha_j | j \neq i \} \rangle, \qquad p_i = q_i \wedge q_{i+1},
$$

$$
r_i = m \vee \langle \beta_i \rangle, \qquad s_i = r_{i-1} \vee r_i,
$$

where $\langle \cdots \rangle$ denotes linear span. Let

$$
\tilde{A}_n=[0,m]\cup[m,v]\cup\bigcup_i[p_i,r_i]\cup\bigcup_i[q_i,s_i],
$$

where $[x, y] = \{z | x \leq z \leq y\}.$

 $A_n \subset L_n$ is a sublattice; the intervals in the union (2) are its maximal complemented intervals, or *blocks;* they are the blocks of a tolerance relation on *An* [5]; as such, the set *S* of blocks acquires a lattice structure; specifically, $0_S = [0, m], 1_S = [m, v], a_i = [p_i, r_i]$ are atoms, $b_i = [q_i, s_i]$ are coatoms, and $a_i < b_i$, b_{i+1} defines the order relation.

Let \overline{m} (dim $\overline{m} = n$) be another vector space, with basis $\{\overline{\alpha}_0, \ldots, \overline{\alpha}_{n-1}\}.$ Define \bar{p}_i , \bar{q}_i by analogy with (1). Let $F = \bigcup_i [p_i, v]$; $F \subset A_n$ is an order filter. Within F , $\bigcup_i [p_i, m]$ is an order ideal. Set up a "twisting" isomorphism

1980 *Mathematics Subject Classification* **(1985** *Revision).* **Primary 06C05.**

Received by the editors March 25, 1986.

^{©1987} American Mathematical Society 0273-0979/87 \$1.00 + \$.25 per page