ALMOST COMMUTING MATRICES AND THE BROWN-DOUGLAS-FILLMORE THEOREM

I. DAVID BERG AND KENNETH R. DAVIDSON

The purpose of this note is to announce a constructive proof of the following theorem of Brown, Douglas, and Fillmore [1] which yields a quantitative version subject to a certain natural resolvent condition. Complete proofs will appear elsewhere.

THEOREM 1 (BDF). Let T be an operator on a Hilbert space $\mathbb X$ such that T^*T-TT^* is compact, and such that the Fredholm index $\operatorname{ind}(T-\lambda)=0$ whenever this is defined $(\lambda \notin \sigma_e(T))$. Then there is a compact operator K such that T-K is normal.

Our quantitative version yields an estimate of ||K|| in terms of the homogeneous quantity $||T^*T - TT^*||^{1/2}$ provided the spectrum of T is in a natural quantitative sense close to the essential spectrum $\sigma_e(T)$. Indeed, if N is normal, and $||T - N|| < \varepsilon$, then

$$||(T - \lambda I)^{-1}|| < (\operatorname{dist}(\lambda, \sigma(N)) - \varepsilon)^{-1}.$$

So it is reasonable to assume this inequality when $\operatorname{dist}(\lambda, \sigma(N)) > \varepsilon$.

THEOREM 2. Given a compact subset X of the plane, there is a continuous positive real-valued function f_X defined on $[0,\infty)$ such that $f_X(0) = 0$ with the following property.

Let T be essentially normal and satisfy the BDF hypotheses:

- (i) $\sigma_e(T) = X$,
- (ii) $ind(T \lambda I) = 0$ for all $\lambda \notin X$.

Furthermore let T satisfy the quantitative hypotheses:

- (iii) $||T^*T TT^*||^{1/2} < \varepsilon$,
- (iv) $||(T \lambda I)^{-1}|| < (\operatorname{dist}(\lambda, X) \varepsilon)^{-1} \text{ if } \operatorname{dist}(\lambda, X) > \varepsilon.$

Then there is a compact operator K such that $||K|| < f_X(\varepsilon)$ and T - K is a normal operator with spectrum X.

The most important special case in our proof is the annulus $A = \{\lambda \in \mathbb{C}: R_1 \leq |\lambda| \leq R_2\}$ In this case, the result obtained is much stronger and applies to more general operators.

THEOREM 3. Let T be an operator on a Hilbert space with $\sigma_e(T) = A = \{\lambda \in \mathbb{C}: R_1 \leq |\lambda| \leq R_2\}$. Suppose $||T|| = R_2$ and $||T^{-1}|| = R_1^{-1}$. Then there is an operator K such that

$$||K|| \le 104||T^*T - TT^*||^{1/2}$$

Received by the editors August 8, 1986. 1980 Mathematics Subject Classification. Primary 47A55, 47B15, 47A66.