ALMOST COMMUTING MATRICES AND THE BROWN-DOUGLAS-FILLMORE THEOREM

I. DAVID BERG AND KENNETH R. DAVIDSON

The purpose of this note is to announce a constructive proof of the following theorem of Brown, Douglas, and Fillmore [1] which yields a quantitative version subject to a certain natural resolvent condition. Complete proofs will appear elsewhere.

THEOREM 1 (BDF). Let T be an operator on a Hilbert space \nVdash such that $T^{*} T-T T^{*}$ is compact, and such that the Fredholm index $\operatorname{ind}(T-\lambda)=0$ whenever this is defined $\left(\lambda \notin \sigma_{e}(T)\right)$. Then there is a compact operator K such that $T-K$ is normal.

Our quantitative version yields an estimate of $\|K\|$ in terms of the homogeneous quantity $\left\|T^{*} T-T T^{*}\right\|^{1 / 2}$ provided the spectrum of T is in a natural quantitative sense close to the essential spectrum $\sigma_{e}(T)$. Indeed, if N is normal, and $\|T-N\|<\varepsilon$, then

$$
\left\|(T-\lambda I)^{-1}\right\|<(\operatorname{dist}(\lambda, \sigma(N))-\varepsilon)^{-1}
$$

So it is reasonable to assume this inequality when $\operatorname{dist}(\lambda, \sigma(N))>\varepsilon$.
THEOREM 2. Given a compact subset X of the plane, there is a continuous positive real-valued function f_{X} defined on $[0, \infty)$ such that $f_{X}(0)=0$ with the following property.

Let T be essentially normal and satisfy the BDF hypotheses:
(i) $\sigma_{e}(T)=X$,
(ii) $\operatorname{ind}(T-\lambda I)=0$ for all $\lambda \notin X$.

Furthermore let T satisfy the quantitative hypotheses:
(iii) $\left\|T^{*} T-T T^{*}\right\|^{1 / 2}<\varepsilon$,
(iv) $\left\|(T-\lambda I)^{-1}\right\|<(\operatorname{dist}(\lambda, X)-\varepsilon)^{-1} i f \operatorname{dist}(\lambda, X)>\varepsilon$.

Then there is a compact operator K such that $\|K\|<f_{X}(\varepsilon)$ and $T-K$ is a normal operator with spectrum X.

The most important special case in our proof is the annulus $A=\{\lambda \in$ C: $\left.R_{1} \leq|\lambda| \leq R_{2}\right\}$ In this case, the result obtained is much stronger and applies to more general operators.

Theorem 3. Let T be an operator on a Hilbert space with $\sigma_{e}(T)=A=$ $\left\{\lambda \in \mathbf{C}: R_{1} \leq|\lambda| \leq R_{2}\right\}$. Suppose $\|T\|=R_{2}$ and $\left\|T^{-1}\right\|=R_{1}^{-1}$. Then there is an operator K such that

$$
\|K\| \leq 104\left\|T^{*} T-T T^{*}\right\|^{1 / 2}
$$

