FATOU THEOREMS ON DOMAINS IN \mathbf{C}^{n}

STEVEN G. KRANTZ

If $D \subseteq \mathbf{C}$ is the unit disc and $0<p<\infty$ then define $H^{p}(D)$ to be those f holomorphic on D such that

$$
\|f\|_{H^{p}} \equiv \sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta^{1 / p}<\infty
$$

The space $H^{\infty}(D)$ consists of the bounded holomorphic functions equipped with the supremum norm. The classical Fatou theorem asserts that if $f \in$ $H^{p}(D)$ then for a.e. (with respect to linear measure in ∂D) $e^{i \theta} \in \partial D$ it holds that

$$
\lim _{r \rightarrow 1^{-}} f\left(r e^{i \theta}\right) \equiv f^{*}\left(e^{i \theta}\right)
$$

exists. For $p \geq 1$, the function f can be recovered from f^{*} by means of the Cauchy or Poisson integral formulas. See [JG or SK].

It is an important and useful fact that this radial approach to $e^{i \theta} \in \partial D$ may be replaced by a more general type of approach: if $\alpha>1$ and $P \in \partial D$ we define the Stolz region

$$
\Gamma_{\alpha}(P)=\{z \in D:|z-P|<\alpha \cdot(1-|z|)\} .
$$

Then, for any $0<p \leq \infty, f \in H^{p}(D)$, and $\alpha>1$ we have

$$
\lim _{\Gamma_{\alpha}(P) \ni z \rightarrow P} f(z)=f^{*}(P)
$$

for a.e. $P \in \partial D$. It is known $[\mathbf{I P}]$ that this nontangential method of approach is best possible.

If $\Omega \subseteq \mathbf{C}^{n}$ is a smoothly bounded domain then there is a similar theory of H^{p} spaces (also classical). (Let $\delta_{\Omega}(z) \equiv \operatorname{dist}(z, \partial \Omega)$.) In this theory one replaces
(i) the circles $\left\{r e^{i \theta}: 0 \leq \theta<2 \pi\right\}$ by $\partial \Omega_{\varepsilon} \equiv\left\{z \in \Omega: \delta_{\Omega}(z)=\varepsilon\right\}, \varepsilon$ small;
(ii) linear measure by $(2 n-1)$-dimensional area measure;
(iii) Stolz regions Γ_{α} by cones in space of fixed aperture.

It is a remarkable discovery of Korányi (for the ball and for certain symmetric domains [AK1, AK2]) and of Stein (for smoothly bounded domains [ES1]) that in $\mathbf{C}^{n}, n>1$, the conical approach regions are not optimal for studying the boundary behavior of H^{p} functions. Indeed, they may be replaced by admissible approach regions which are conical in "complex normal directions" and parabolic in "complex tangential directions" (see [ES1, SK]).

[^0]
[^0]: Received by the editors June 30, 1986.
 1980 Mathematics Subject Classification. Primary 32A35; Secondary 42B30.
 Work supported in part by a grant from the National Science Foundation. I am grateful to the Institute for Advanced Study for its hospitality during a portion of this work.

