SINGULAR LOCI OF SCHUBERT VARIETIES FOR CLASSICAL GROUPS

V. LAKSHMIBAI

In this note, we give an explicit description of the singular locus of a Schubert variety in the flag variety G / B, where G is a classical group, and B a Borel subgroup of G.

Let G be a classical group, and T a maximal torus in G. Let W be the Weyl group, and R the system of roots, of G relative to T. Let B be a Borel subgroup of G, where $B \supset T$. Let S (resp. R^{+}) be the set of simple (resp. positive) roots of R relative to B. For $\alpha \in R$, let s_{α} be the reflection with respect to α, and X_{α} the element in the Chevalley basis for the Lie algebra of G, associated to α. For $w \in W$, let $e(w)$ denote the point in G / B corresponding to w. The Schubert variety $X(w)$, where $w \in W$, is by definition the Zariski closure of $B e(w)$ in $G / B .(X(w)$ is understood to be endowed with the canonical reduced structure.) Let \succeq denote the Bruhat order in W. It is well known that for $w_{1}, w_{2} \in W$,

$$
w_{1} \succeq w_{2} \quad \text { if and only if } \quad X\left(w_{1}\right) \supseteq X\left(w_{2}\right) .
$$

(For generalities on algebraic groups, one may refer to [1].)
The results on the singular locus of a Schubert variety are obtained as consequences of "standard monomial theory" as developed in Geometry of G / P. I-V (cf. [11, 7, 4, 5, 8]). One of the consequences of standard monomial theory is the First Basis Theorem (cf. $[\mathbf{5}, \mathbf{8}, \mathbf{6}]$) which gives a \mathbf{Z} basis

$$
\{P(\lambda, \mu),(\lambda, \mu) \text { an admissible pair }\}
$$

for $H^{0}\left(G_{\mathbf{Z}} / P_{\mathbf{Z}}, L_{\mathbf{Z}}\right)$, where $P_{\mathbf{Z}}$ is a maximal parabolic subgroup scheme of $G_{\mathbf{Z}}$ and $L_{\mathbf{Z}}$ is the ample generator of $\operatorname{Pic}\left(G_{\mathbf{Z}} / P_{\mathbf{Z}}\right)$. For any field k, let us denote the canonical image of $P(\lambda, \mu)$ in $H^{0}\left(G_{\mathbf{Z}} \otimes k / P_{\mathbf{Z}} \otimes k, L_{\mathbf{Z}} \otimes k\right)$ by $p(\lambda, \mu)$. In [9], it is shown that over any field k, for $w, \tau \in W$, with $w \succeq \tau$, the Zariski tangent space $T(w, \tau)$, to $X(w)$ at $e(\tau)$ is spanned by

$$
\left\{X_{-\beta}, \beta \in \tau\left(R^{+}\right) \left\lvert\, \begin{array}{l}
\text { for all }(\lambda, \mu) \text { such that } X_{-\beta} p(\lambda, \mu)=c p(\tau, \tau), c \in k^{*}, \\
\left.p(\lambda, \mu)\right|_{X(w) \neq 0}
\end{array}\right.\right\}
$$

Denoting by $\{Q(\lambda, \mu)\}$ the basis for the \mathbf{Z}-dual of $H^{0}\left(G_{\mathbf{Z}} / P_{\mathbf{Z}}, L_{\mathbf{Z}}\right)$, dual to the basis $\{P(\lambda, \mu)\}$, it can be seen easily that $X_{-\beta} p(\lambda, \mu)=c p(\tau, \tau), c \in k^{*}$, if and only if $X_{-\beta} Q(\tau, \tau)$, when written as a Z-linear combination of the elements

[^0]
[^0]: Received by the editors June 7, 1985 and, in revised form, May 14, 1986.
 1980 Mathematics Subject Classification (1985 Revision). Primary 14M15; Secondary 20G05.

 Research partially supported by the NSF.

