SINGULAR LOCI OF SCHUBERT VARIETIES FOR CLASSICAL GROUPS

V. LAKSHMIBAI

In this note, we give an explicit description of the singular locus of a Schubert variety in the flag variety G/B, where G is a classical group, and B a Borel subgroup of G.

Let G be a classical group, and T a maximal torus in G. Let W be the Weyl group, and R the system of roots, of G relative to T. Let B be a Borel subgroup of G, where $B \supset T$. Let S (resp. R^+) be the set of simple (resp. positive) roots of R relative to B. For $\alpha \in R$, let s_{α} be the reflection with respect to α , and X_{α} the element in the Chevalley basis for the Lie algebra of G, associated to α . For $w \in W$, let e(w) denote the point in G/B corresponding to w. The Schubert variety X(w), where $w \in W$, is by definition the Zariski closure of B e(w) in G/B. (X(w) is understood to be endowed with the canonical reduced structure.) Let \succeq denote the Bruhat order in W. It is well known that for $w_1, w_2 \in W$,

$$w_1 \succeq w_2$$
 if and only if $X(w_1) \supseteq X(w_2)$.

(For generalities on algebraic groups, one may refer to [1].)

The results on the singular locus of a Schubert variety are obtained as consequences of "standard monomial theory" as developed in *Geometry of* G/P. I-V (cf. [11, 7, 4, 5, 8]). One of the consequences of standard monomial theory is the First Basis Theorem (cf. [5, 8, 6]) which gives a Z basis

 $\{P(\lambda,\mu), (\lambda,\mu) \text{ an admissible pair}\}\$

for $H^0(G_{\mathbf{Z}}/P_{\mathbf{Z}}, L_{\mathbf{Z}})$, where $P_{\mathbf{Z}}$ is a maximal parabolic subgroup scheme of $G_{\mathbf{Z}}$ and $L_{\mathbf{Z}}$ is the ample generator of $\operatorname{Pic}(G_{\mathbf{Z}}/P_{\mathbf{Z}})$. For any field k, let us denote the canonical image of $P(\lambda, \mu)$ in $H^0(G_{\mathbf{Z}} \otimes k/P_{\mathbf{Z}} \otimes k, L_{\mathbf{Z}} \otimes k)$ by $p(\lambda, \mu)$. In [9], it is shown that over any field k, for $w, \tau \in W$, with $w \succeq \tau$, the Zariski tangent space $T(w, \tau)$, to X(w) at $e(\tau)$ is spanned by

$$\left\{X_{-\beta}, \beta \in \tau(R^+) \left| \begin{array}{l} \text{for all } (\lambda, \mu) \text{ such that } X_{-\beta} p(\lambda, \mu) = c p(\tau, \tau), c \in k^*, \\ p(\lambda, \mu)|_{X(w)} \neq 0 \end{array} \right\}.$$

Denoting by $\{Q(\lambda,\mu)\}$ the basis for the **Z**-dual of $H^0(G_{\mathbf{Z}}/P_{\mathbf{Z}}, L_{\mathbf{Z}})$, dual to the basis $\{P(\lambda,\mu)\}$, it can be seen easily that $X_{-\beta}p(\lambda,\mu) = cp(\tau,\tau), c \in k^*$, if and only if $X_{-\beta}Q(\tau,\tau)$, when written as a **Z**-linear combination of the elements

©1987 American Mathematical Society 0273-0979/87 \$1.00 + \$.25 per page

Received by the editors June 7, 1985 and, in revised form, May 14, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 14M15; Secondary 20G05.

Research partially supported by the NSF.