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SINGULAR LOCI OF SCHUBERT VARIETIES 
FOR CLASSICAL GROUPS 

V. LAKSHMIBAI 

In this note, we give an explicit description of the singular locus of a Schu
bert variety in the flag variety G/B, where G is a classical group, and B a 
Borel subgroup of G. 

Let G be a classical group, and T a maximal torus in G. Let W be the 
Weyl group, and R the system of roots, of G relative to T. Let B be a 
Borel subgroup of G, where B D T. Let S (resp. i?+) be the set of simple 
(resp. positive) roots of R relative to B. For a G Ü , let 8a be the reflection 
with respect to a, and Xa the element in the Chevalley basis for the Lie 
algebra of G, associated to a. For w € W, let e(w) denote the point in 
G/B corresponding to w. The Schubert variety X(w)y where w G W, is by 
definition the Zariski closure of B e(w) in G/B. {X(w) is understood to be 
endowed with the canonical reduced structure.) Let >: denote the Bruhat 
order in W. It is well known that for w\,W2 £ W, 

w\ > W2 if and only if X(w\) D X(w2). 

(For generalities on algebraic groups, one may refer to [1].) 
The results on the singular locus of a Schubert variety are obtained as 

consequences of "standard monomial theory" as developed in Geometry of 
G/P. I-V (cf. [11, 7, 4, 5, 8]). One of the consequences of standard monomial 
theory is the First Basis Theorem (cf. [5, 8, 6]) which gives a Z basis 

(P(A,/x), (A,/i) an admissible pair} 

for H°(Gz/Pz, Lz), where Pz is a maximal parabolic subgroup scheme of Gz 
and Lz is the ample generator of Pic(Gz/-Pz)- For any field fc, let us denote 
the canonical image of P(A, /x) in H°(Gz ® k/Pz ® fc, Lz <8> k) by p(A, fx). In 
[9], it is shown that over any field fc, for iu,r € W> with w >: r, the Zariski 
tangent space T(W,T), to X(w) at e(r) is spanned by 

for all (A, IA) such that X_0p(A, /i) = cp(r, r), c £ fe*, 1 
p(A,/i)lx(u»)^0 J ' 

Denoting by {(?(A, //)} the basis for the Z-dual of H°(Gz/Pz, £z)> dual to the 
basis {P(A, /x)}, it can be seen easily that X-^p(A, /z) = cp(r, r), c € fc*, if and 
only if X_/3Q(T,T) , when written as a Z-linear combination of the elements 
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X_^,/3€r(f l+) 


