RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 16, Number 1, January 1987

COUNTING LATIN RECTANGLES

IRA M. GESSEL

A $k \times n$ Latin rectangle is a $k \times n$ array of numbers such that each row is a permutation of $\{1,2, \ldots, n\}$ and each column has distinct entries. The problem of counting Latin rectangles is of considerable interest. Explicit formulas for $k=3$ are fairly well known [1-3, 4, pp. 284-286 and 506-507, 5, 6, 9-11, 12, pp. 204-210]. Formulas for $k=4$ were found by Pranesachar et al. $[\mathbf{1}, \mathbf{9}]$ and a complicated formula for all k was found by Nechvatal [8]. We give here a simple derivation of a formula similar to Nechvatal's. The formula implies that for fixed k, the number of $k \times n$ Latin rectangles satisfies a linear recurrence with polynomial coefficients. We use properties of the Möbius functions of partition lattices, as did Bogart and Longyear [2], Pranesachar et al. [1, 9], and Nechvatal [8], but in a somewhat different way.

In order to state the formula, we first make some definitions. Let \mathcal{P} be the set of partitions of $k=\{1,2, \ldots, k\}$ and let S be the set of nonempty subsets of \mathbf{k}. If f is a function from \mathcal{P} to the nonnegative integers \mathbf{N}, and A is in S, then we set $\langle f, A\rangle=\sum_{\pi \ni A} f(\pi)$, where the sum is over all partitions π of which A is a block. We shall say that two functions $f, g: \mathcal{P} \rightarrow \mathbf{N}$ are compatible if $\langle f, A\rangle=\langle g, A\rangle$ for each A in S.

THEOREM. The number of $k \times n$ Latin rectangles is

$$
\sum_{f, g} \frac{n!^{2}}{\prod_{\pi \in \mathcal{P}} f(\pi)!g(\pi)!} \prod_{A \in S}(-1)^{\langle f, A\rangle(|A|-1)}(|A|-1)!^{\langle f, A\rangle}\langle f, A\rangle!,
$$

where the sum is over all compatible pairs f, g of functions from \mathcal{P} to \mathbf{N} satisfying $\sum_{\pi \in \mathcal{P}} f(\pi)=\sum_{\pi \in \mathcal{P}} g(\pi)=n$.

Proof. We first restate the problem in terms of bipartite graphs. Given a $k \times n$ "rectangle" satisfying the row conditions, but with column entries not necessarily distinct, we may associate to it a bipartite graph with vertex sets $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, and with edges colored in k colors. (We identify the set of colors with \mathbf{k}.) If the rectangle has the entry l

