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1. Multipliers. One of the simplest examples of a multiplier in a space of 
differentiable functions is a measurable function y(x), x G RW, such that the 
operator of pointwise multiplication u -> y • u is bounded from the Sobolev 
space W^ on Rn into L2 on Rn\ equivalently, there is a constant c such that 

(1) ƒ \y(x) • <t>(x) fdx < cƒ (| V*(x) |2 + |* (x) f) dx 

for all <j> e C0°°(R"). The space of all such y is denoted by M(W} -* L2), with 
the smallest c in (1) the square of the multiplier norm of y. Clearly, one can 
easily extend this notion to pairs of higher-order Sobolev spaces: Wp

m -> Wf, 
k < m, 1 <p,q < oc, or for that matter, to any of the various pairs of 
function spaces that naturally occur in analysis. The coefficients of a differen­
tial operator acting on Sobolev functions can be interpreted as multipliers. For 
example, if P(x, D)u = L{a{<kaa(x)D?u, then P: Wp

m -> Wp
m~k is continu­

ous when aa e M(Wp
m~lal -» Wp

m~k). The function y is called a compact 
multiplier if the operator of pointwise multiplication is a compact operator. 
The principal theme of the book under review (referred to below as Multi­
pliers) is the characterization of multipliers and compact multipliers in the 
basic Sobolev-type spaces used in analysis. Because of their connection to 
differential equations, it is not surprising that there are plenty of sufficient 
conditions in the literature for multipliers or compact multipliers. For example, 


