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The transitions of solutions of a linear differential equation from oscillatory 
to exponentially growing or exponentially decaying behavior as the indepen­
dent variable, for example, changes sign are phenomena of interest to physi­
cists and other scientists, primarily in the past sixty years, and continuing even 
today. The simplest equation exhibiting such behavior is Airy's equation 

(A) / ' + xy = 0, 

obtained from his study of the rainbow [2]. If we set x = [\p(0)e~2]l/3t, then 
the rainbow equation (A) becomes 

(A*) e2d2y/dt2 + txp(0)y = 0, 

which might well be expected to have solutions close to solutions of the 
equation 

( A # ) e2d2y/dt2 + t^(t)y = 0 (^(0) * 0). 

This idea occured to R. Gans in 1915 [6] in his investigations of total reflection 
in physical—as opposed to geometrical—optics. The point / = 0 is called a 
(simple) turning point, one where solutions of (A#) change from oscillatory to 
exponential behavior. An obvious mathematical question, only answered much 
later by R. E. Langer [8, 9] and others, is whether one can find changes of 
variables in (A) such that (A#) becomes (A*) with ^(0) = 1 and with a small 
error term included. If the transformation from (A#) to A(*) is exact, it turns 
out that often it is but a formal power series in e with coefficients holomorphic 
in the complex variable x, i.e., an asymptotic series which converges only for 


