NONCLASSICAL EIGENVALUE ASYMPTOTICS FOR OPERATORS OF SCHRÖDINGER TYPE

DAVID GURARIE

We consider operators in the form $A=-\nabla \cdot \rho \nabla+V(x)$ on \mathbf{R}^{n}, where metric $\rho=\left(\rho_{i j}(x)\right) \geq 0$ and potential $V(x) \geq 0$. The classical Weyl principle for asymptotic distribution of large eigenvalues of A states that the counting function

$$
N(\lambda)=\#\left\{\lambda_{j} \leq \lambda\right\} \sim \operatorname{Vol}\{(x ; \xi) \mid \rho \xi \cdot \xi+V(x) \leq \lambda\} \quad \text { as } \lambda \rightarrow \infty
$$

(See for instance $[\mathbf{G u}]$.) Integrating out variable ξ we can rewrite it as

$$
\begin{equation*}
N(\lambda) \sim \frac{\omega_{n}}{(2 \pi)^{n}} \int(\lambda-V)_{+}^{n / 2} \frac{d x}{\sqrt{\operatorname{det} \rho}} \tag{1}
\end{equation*}
$$

If potential V and metric ρ are assumed to be homogeneous in $x, V(x)=$ $|x|^{\alpha} V\left(x^{\prime}\right) ; \rho_{i j}(x)=|x|^{\beta} \rho_{i j}\left(x^{\prime}\right), x^{\prime}=x /|x|$, then (1) reduces to

$$
\begin{equation*}
N(\lambda) \sim C \lambda^{[n / 2+(1-\beta / 2) n / \alpha]} \int V^{-(n / \alpha)(1-\beta / 2)} \frac{d S}{\sqrt{\operatorname{det} \rho}} \tag{2}
\end{equation*}
$$

integration over the unit sphere S with constant

$$
C=\frac{\omega_{n}}{(2 \pi)^{n} \alpha} B\left(\frac{n}{2}+1 ; \frac{n}{\alpha}(1-\beta / 2)\right),
$$

which depends on the volume ω_{n} of the unit sphere in \mathbf{R}^{n} and the beta function.

Assuming $\beta<2$ we see that integral (2) becomes divergent if $V\left(x^{\prime}\right)$ vanishes to a sufficiently high order. The simplest such potential is $V(x, y)=|x|^{\alpha}|y|^{\beta}$ on $\mathbf{R}^{n}+\mathbf{R}^{m}$.

The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator $-\Delta+V(x)$, fails to predict discrete spectrum below any energy level $\lambda>0$. However, as was shown by D. Robert $[\mathbf{R o}]$ and B. Simon $[\mathbf{S i}], A$ has purely discrete spectrum $\left\{\lambda_{j}\right\} \rightarrow+\infty$ (for qualitative explanation of this phenomenon see [Fe]). Moreover, the "nonclassical" asymptotics of $N(\lambda)$ was derived for such A.

Recently M. Solomyak [So] studied a general class of Schrödinger operators $-\Delta+V(x)$ with homogeneous potentials V subject to the following constraint:
(A) zeros of $V,\{x: V(x)=0\}$ form a smooth cone Σ in \mathbf{R}^{n} of dimension m, and V vanishes on Σ "uniformly" to order $b>0$.

Introducing variables $x \in \Sigma$ and $y \in N_{x}$ (the normal to Σ at $\{x\}$), hypothesis (A) means that there exists

$$
\lim _{t \rightarrow 0} t^{-b} V(x+t y)=V_{0}(x, y)
$$

[^0]
[^0]: Received by the editors November 18, 1985.
 1980 Mathematics Subject Classification (1985 Revision). Primary 35P20; Secondary 35J10.

