COUNTEREXAMPLES IN THE THEORY OF NONSELFADJOINT OPERATOR ALGEBRAS

W. R. WOGEN

In this note we announce the answers to several questions which involve nonselfadjoint operator algebras. Detailed proofs will appear elsewhere.

We use the following notation. \mathcal{H} is a separable Hilbert space, $\mathcal{B}(\mathcal{H})$ is the algebra of bounded linear operators on \mathcal{H} , and $\mathcal{B}_1(\mathcal{H})$ is the ideal of trace class operators on \mathcal{H} . For $T \in \mathcal{B}(\mathcal{H})$, $\{T\}'$ is the commutant of T and $\{T\}''$ is the double commutant of T.

 $\mathcal{B}(\mathcal{X})$ is the dual of $\mathcal{B}_1(\mathcal{X})$ (see [2]) so that $\mathcal{B}(\mathcal{X})$ has a weak * topology. $\mathcal{A}(T)$ denotes the smallest weak * closed algebra containing T and I, while $\mathcal{W}(T)$ is the smallest weak operator closed algebra containing T and I. Lat T is the lattice of (closed) invariant subspaces of T, and Alg Lat $T = \{B \in \mathcal{B}(\mathcal{X}) : \text{Lat } T \subset \text{Lat } B\}$. It is elementary that $\mathcal{A}(T) \subset \mathcal{W}(T) \subset \{T\}'' \subset \{T\}',$ that $\mathcal{W}(T) \subset \text{Alg Lat } T$, and that all of these sets except $\mathcal{A}(T)$ are weakly closed algebras. Further, T is said to be reflexive if $\mathcal{W}(T) = \text{Alg Lat } T$.

We will consider the following questions.

QUESTION 1. Does $\mathcal{W}(T) = \{T\}' \cap \operatorname{Alg}\operatorname{Lat} T, \forall T \in \mathcal{B}(\mathcal{H})$?

QUESTION 2. Does $\mathcal{W}(T) = \{T\}'' \cap \operatorname{Alg}\operatorname{Lat} T, \forall T \in \mathcal{B}(\mathcal{X})\}$?

QUESTION 3. Must $T^{(n)}$ be reflexive, $\forall T \in \mathcal{B}(\mathcal{H})$ and $\forall n > 1$? (Here $T^{(n)}$ denotes the direct sum of n copies of T.)

QUESTION 4. If T_1 and T_2 are reflexive operators, must $T_1 \oplus T_2$ be reflexive? QUESTION 5. Does $\mathcal{A}(T) = \mathcal{W}(T), \forall T \in \mathcal{B}(\mathcal{X})$?

QUESTION 6. Does $\mathcal{W}(T)$ have a separating vector, $\forall T \subset \mathcal{B}(\mathcal{X})$?

Before stating the last question, we need some additional notation. Since $\mathcal{W}(T)$ is weak * closed in $\mathcal{B}(\mathcal{H}), \mathcal{W}(T)$ is a dual space, with predual $\mathcal{W}(T)_* = \mathcal{B}_1(\mathcal{H})/\mathcal{W}(T)_{\perp}$. Here $\mathcal{W}(T)_{\perp}$ denotes the preannihilator of $\mathcal{W}(T)$. For each n, let $F_n \subset \mathcal{B}_1(\mathcal{H})$ denote the set of operators of rank $\leq n$.

QUESTION 7. Is $F_1/\mathcal{W}(T)_{\perp}$ dense in $\mathcal{W}(T)_*, \forall T \subset \mathcal{B}(\mathcal{H})$?

Some remarks regarding these questions are in order. There are some relations among the questions. For n = 1, 2, or 6, an affirmative answer to Question n implies an affirmative answer to Question n + 1.

Question 1 was raised independently by D. Sarason and P. Rosenthal (see [6, p. 195] and [7]). Rosenthal also asked Question 2 in [7]. In [4], J. Deddens listed several open questions, including Questions 3 and 4, concerning reflexive operators.

Question 5 has been raised by many people. The question appears in [2]. In [8], D. Westwood gave an example of an operator T so that $\mathcal{A}(T) = \mathcal{W}(T)$ but so that the weak and weak * topologies are different on $\mathcal{A}(T)$.

Received by the editors February 1, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47C05, 47D25; Secondary 47A15.

^{©1986} American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page