POTENTIAL THEORY FOR THE SCHRÖDINGER EQUATION

M. CRANSTON, E. FABES, AND Z. ZHAO

Recently there has been a wave of results [2, 4, 5, 11, 15, 16, 17], on what is now referred to as the conditional gauge theorem. These works were inspired by [1 and 6]. We prove this result in greater generality than before and derive interesting new consequences. Let

$$A = \sum rac{\partial}{\partial x^j} \left(a_{ij}(x) rac{\partial}{\partial x^i}
ight)$$

be a uniformly elliptic operator whose coefficients are bounded measurable functions on a bounded Lipschitz domain $D \subseteq \mathbb{R}^d$. Define the Kato class K_d as the class of functions on D such that

$$\lim_{\alpha\downarrow 0}\sup_{x\in D}\int_{|x-y|<\alpha}\frac{|V(y)|}{|x-y|^{d-2}}\,dy=0.$$

Our approach is to prove results about the operator L = A + V by using known results for A and studying the probabilistic quantity, the conditional gauge.

In order to introduce the conditional gauge let p(t, x, y) be the Green function for the parabolic equation $A = \partial/\partial t$ on $D \times (0, \infty)$. Let (X_t, P_x) be the diffusion, killed at the exit time $\tau_D = \inf\{t > 0: X_t \in D\}$, whose transition density is p(t, x, y). The analysis involves the diffusion X_t conditioned on its exit position. This conditioned diffusion, see [10], has transition density $p^z(t, x, y) = K_A(x, z)^{-1}p(t, x, y)K_A(y, z)$, where K_A is the kernel function for A on D, $x, y \in D$, $z \in \partial D$. We shall write $P_x^z(\cdot) = P_x(\cdot | X_{\tau_D} = z)$ and $e_V(t) = \exp\{\int_0^t V(x_s) ds\}$. The so-called gauge is the function on D, $F(1; x) \equiv E_x[e_V(\tau_D)]$ and the conditional gauge is defined on $D \times \partial D$ by $F(1; x, z) \equiv E_x^z[e_V(\tau_D)]$. Theorem 1 was first proven in [12] when $A = \Delta$, Vis bounded and ∂D is C^2 , later when $A = \Delta$, $V \in K_d$ and ∂D is $C^{1,1}$ in [16] and recently when $A = \Delta$, $V \in L^p$ for some p > d/2 and ∂D is Lipschitz in [13]. Our main result is the following.

THEOREM 1. Suppose the uniformly elliptic

$$A = \sum rac{\partial}{\partial x^j} \left(a_{ij}(x) rac{\partial}{\partial x^i}
ight)$$

has bounded measurable coefficients, $V \in K_d$, and $D \subseteq R^d$ is bounded and Lipschitz. Then $F(1;x) < \infty$ for some $x \in D$ iff there is a positive constant c such that $c^{-1} \leq F(1;x,z) \leq c$, $(x,z) \in D \times \partial D$.

1980 Mathematics Subject Classification (1985 Revision). Primary 60J45, 31B25.

Received by the editors November 11, 1985.

^{©1986} American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page