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POTENTIAL THEORY FOR THE SCHRODINGER EQUATION 

M. CRANSTON, E. FABES, AND Z. ZHAO 

Recently there has been a wave of results [2, 4, 5, 11, 15, 16, 17], on 
what is now referred to as the conditional gauge theorem. These works were 
inspired by [1 and 6]. We prove this result in greater generality than before 
and derive interesting new consequences. Let 

be a uniformly elliptic operator whose coefficients are bounded measurable 
functions on a bounded Lipschitz domain D Ç Rd. Define the Kato class Kd 
as the class of functions on D such that 

limsup / , | 7 ( ^ 2 dy = 0. 

Our approach is to prove results about the operator L = A + V by using 
known results for A and studying the probabilistic quantity, the conditional 
gauge. 

In order to introduce the conditional gauge let p(t, x, y) be the Green func­
tion for the parabolic equation A — djdt on D x (0, oo). Let (Xt, Px) be the 
diffusion, killed at the exit time TD = inf{£ > 0:Xt G J9}, whose transition 
density is p(t,x,y). The analysis involves the diffusion Xt conditioned on 
its exit position. This conditioned diffusion, see [10], has transition density 
pz(t,x,y) = KA{X)Z)~1p(t,Xiy)KA(y,z), where KA is the kernel function 
for A on D, x,y G Z>, z G dD. We shall write P*() = PX(-\XTD = z) 
and e^(£) = exp{/0 V(x3)ds}. The so-called gauge is the function on £>, 
F(l ;x) = Ex[ev{rD)\ and the conditional gauge is defined o n D x dD by 
F(l ;x ,z) = ££[ev(T£>)]. Theorem 1 was first proven in [12] when A — A, V 
is bounded and dD is C2 , later when A = A, V G Kd and dD is C1 , 1 in [16] 
and recently when A = A, V G Lp for some p > d/2 and dD is Lipschitz in 
[13]. Our main result is the following. 

THEOREM 1. Suppose the uniformly elliptic 

A = £ ^ ( M * ) 5 ? ) 

has bounded measurable coefficients, V G Kd, and D Ç Rd is bounded and 
Lipschitz. Then F(l;x) < oo for some x G D iff there is a positive constant c 
such that c - 1 < F( l ; x, z) < c, (x, z) G D x dD. 

Received by the editors November 11, 1985. 
1980 Mathematica Subject Classification (1985 Revision). Primary 60J45, 31B25. 

©1986 American Mathematical Society 
0273-0979/86 $1.00 + $.25 per page 

213 


