DIRECT IMAGES OF HERMITIAN HOLOMORPHIC BUNDLES

H. GILLET AND C. SOULÉ

Introduction. We introduce higher analogues of analytic torsion, which are form valued. Using this construction we obtain, in the case of the projection map for a product, a Grothendieck-Riemann-Roch theorem for hermitian holomorphic vector bundles which is an equality between differential forms. This is related to work of Quillen [6] and of Bismut and Freed [1].

I. A Grothendieck group.

I.1. Let X be a complex manifold. For any $p \in \mathbb{N}$ let $A^{p,p}(X)$ be the space of real (p,p) forms over X. Let $A(X) = \bigoplus_{p \ge 0} A^{p,p}(X)$, and $\tilde{A}(X) = A(X)/(\operatorname{Im}(\partial) + \operatorname{Im}(\overline{\partial}))$, where $d = \partial + \overline{\partial}$ is the standard decomposition of the exterior derivative on X.

I.2. An hermitian holomorphic bundle (or h.h. bundle) on X is a pair $\overline{E} = (E, h)$, consisting of a finite-dimensional complex holomorphic vector bundle E over X and a smooth hermitian scalar product h on E. Given \overline{E} , let ∇ be the unique connection on E which is both compatible with its complex structure and unitary for h, as in [2]. The closed form $ch(\overline{E}) = Tr(exp((i/2\pi)\nabla^2))$ in A(X) represents the Chern character of E.

I.3. Let $\hat{K}_0(X)$ be the abelian group generated by pairs (\overline{E}, η) where E is an h.h. bundle over X and $\eta \in \tilde{A}(X)$, with the following relations. Let

$$\overline{\mathcal{E}} : 0 o \overline{S} o \overline{E} o \overline{Q} o 0$$

be any exact sequence of holomorphic bundles over X, endowed with arbitrary metrics, and $\eta', \eta'' \in \tilde{A}(X)$. We impose the relation $(\overline{S}; \eta') + (\overline{Q}; \eta'') = (\overline{E}; \eta' + \eta'' - \widetilde{ch}(\overline{\mathcal{E}}))$, where $\widetilde{ch}(\overline{\mathcal{E}}) \in \tilde{A}(X)$ is the solution to the equation

$$1/\pi i)\partial\overline{\partial}\mathrm{ch}(\overline{\mathcal{E}})=\mathrm{ch}(\overline{S})+\mathrm{ch}(\overline{Q})-\mathrm{ch}(\overline{E})$$

introduced by Bott and Chern in [2].

I.4. The following construction of ch is used in the proofs of the results below. Let $\mathcal{O}(1)$ be the tautological line bundle on the complex projective line \mathbf{P}^1 , and let z be the parameter on the affine line $\mathbf{A}^1 \subset \mathbf{P}^1$. If $\sigma: \mathcal{O} \to \mathcal{O}(1)$ is the section vanishing at infinity, let $s = \operatorname{Id} \otimes \sigma$ be the induced map $S \to S(1)$ on $X \times \mathbf{P}^1$. If $i: S \to E$ is the inclusion in $\overline{\mathcal{E}}$ above, let $F = (S(1) \oplus E)/S$ be the vector bundle which is the cokernel of $s \oplus i$. If $i_p: X \times \{p\} \to X \times \mathbf{P}^1$ for $p = 0, \infty$ are the natural inclusions, then $i_0^*F \simeq E$ while $i_\infty^*F \simeq S \oplus Q$. We may choose a metric on F so that these maps are isometries. Then, in $\widetilde{A}(X)$:

$$\widetilde{\operatorname{ch}}(\overline{\mathcal{E}}) = \int_{oldsymbol{z}} \operatorname{ch}(\overline{F}) \log |oldsymbol{z}|.$$

Received by the editors May 8, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 58G10.

Partially supported by NSF Grant DMS 850248.

^{©1986} American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page