H-COBORDISMS WITH FOLIATED CONTROL

F. T. FARRELL AND L. E. JONES

Abstract

We announce a foliated version of Ferry's metric h-cobordism theorem [13]. Let M be a compact Riemannian manifold and \mathcal{F} a smooth foliation of M such that the sectional curvatures of the leaves of \mathcal{f} are zero. There are numbers $\alpha>0$ (depending only on $\operatorname{dim}(M)$) and $\delta>0$ (depending on M and \mathcal{F}) so that if W is an h-cobordism over M having δ control in the directions perpendicular to \mathcal{F} and having $\alpha \cdot i(\mathcal{F})$ control in the directions tangent to \mathcal{F}, then W is a product cobordism. Here $i(\mathcal{F})$ denotes the greatest lower bounds for the injectivity radii of all the leaves of \mathcal{F}.

Statement of theorems. M will denote a smooth compact Riemannian manifold and \mathcal{F} will denote a smooth foliation of M. Note that each leaf L of \mathcal{F} inherits a Riemannian structure from M, and therefore has a well-defined radius of injectivity $i(L)$ (cf. [5]). We define $i(\mathcal{F})$ to be the greatest lower bound for all the $i(L)$.
W will denote an h-cobordism with $\partial_{-} W=M . W$ comes equipped with homotopy retractions $h^{-}: W \times[0,1] \rightarrow W$ and $h^{+}: W \times[0,1] \rightarrow W$, satisfying: $h^{-}(W \times 1) \subset \partial_{-} W, h^{-}(x, t)=x$ for all $x \in \partial_{-} W$ and $t \in[0,1] ; h^{+}(W \times 1) \subset$ $\partial_{+} W, h^{+}(x, t)=x$ for all $x \in \partial_{+} W$ and $t \in[0,1]$.

To any continuous path $p:[0,1] \rightarrow M$ we can associate two numbers $L_{1}(p)$, $L_{2}(p)$ as follows. $L_{2}(p)$ is the greatest lower bound of all numbers $\lambda>0$ that satisfy: there is a continuous path $q:[0,1] \rightarrow L$ into some leaf L of \mathcal{F} such that $d(q(t), p(t)) \leq \lambda$ for all $t \in[0,1]$ (here $d($,$) denotes the metric on M$ induced by the Riemannian structure). Define $L_{1}(p)$ to be the greatest lower bound of all numbers $\lambda>0$ that satisfy: there is a continuous path $q:[0,1] \rightarrow L$ into a leaf of \mathcal{F} such that $d(q(t), p(t)) \leq 2 L_{2}(p)$ for all $t \in[0,1]$; moreover the diameter of $q([0,1])$ in L is less than or equal to λ.

Using the $L_{1}()$ and $L_{2}()$ we can now define the diameter of the h cobordism W in the direction parallel to \mathcal{F}-denoted by $D_{1}(W)$-and in the direction perpendicular to \mathcal{F}-denoted by $D_{2}(W)$. For each $y \in W$ let $p_{y}^{-}:[0,1] \rightarrow M$ denote the composition

$$
[0,1]=(y) \times[0,1] \subset W \times[0,1] \xrightarrow{h^{-}} W=W \times 1 \xrightarrow{h^{-}} \partial_{-} W=M ;
$$

and let $p_{y}^{+}:[0,1] \rightarrow M$ denote the composition

$$
[0,1]=(y) \times[0,1] \subset W \times[0,1] \xrightarrow{h^{+}} W=W \times 1 \xrightarrow{h^{-}} \partial_{-} W=M .
$$

[^0]
[^0]: Received by the editors January 12, 1986.
 1980 Mathematics Subject Classification (1985 Revision). Primary 18F25, 57Q10, 57R80.

 Both authors were supported in part by the NSF.

