H-COBORDISMS WITH FOLIATED CONTROL

F. T. FARRELL AND L. E. JONES

ABSTRACT. We announce a foliated version of Ferry's metric h-cobordism theorem [13]. Let M be a compact Riemannian manifold and \mathcal{F} a smooth foliation of M such that the sectional curvatures of the leaves of \mathcal{F} are zero. There are numbers $\alpha > 0$ (depending only on dim(M)) and $\delta > 0$ (depending on M and \mathcal{F}) so that if W is an h-cobordism over Mhaving δ control in the directions perpendicular to \mathcal{F} and having $\alpha \cdot i(\mathcal{F})$ control in the directions tangent to \mathcal{F} , then W is a product cobordism. Here $i(\mathcal{F})$ denotes the greatest lower bounds for the injectivity radii of all the leaves of \mathcal{F} .

Statement of theorems. M will denote a smooth compact Riemannian manifold and \mathcal{F} will denote a smooth foliation of M. Note that each leaf L of \mathcal{F} inherits a Riemannian structure from M, and therefore has a well-defined radius of injectivity i(L) (cf. [5]). We define $i(\mathcal{F})$ to be the greatest lower bound for all the i(L).

W will denote an h-cobordism with $\partial_- W = M$. W comes equipped with homotopy retractions $h^-: W \times [0, 1] \to W$ and $h^+: W \times [0, 1] \to W$, satisfying: $h^-(W \times 1) \subset \partial_- W$, $h^-(x, t) = x$ for all $x \in \partial_- W$ and $t \in [0, 1]$; $h^+(W \times 1) \subset \partial_+ W$, $h^+(x, t) = x$ for all $x \in \partial_+ W$ and $t \in [0, 1]$.

To any continuous path $p: [0,1] \to M$ we can associate two numbers $L_1(p)$, $L_2(p)$ as follows. $L_2(p)$ is the greatest lower bound of all numbers $\lambda > 0$ that satisfy: there is a continuous path $q: [0,1] \to L$ into some leaf L of \mathcal{F} such that $d(q(t), p(t)) \leq \lambda$ for all $t \in [0,1]$ (here d(,) denotes the metric on M induced by the Riemannian structure). Define $L_1(p)$ to be the greatest lower bound of all numbers $\lambda > 0$ that satisfy: there is a continuous path $q: [0,1] \to L$ into a leaf of \mathcal{F} such that $d(q(t), p(t)) \leq 2L_2(p)$ for all $t \in [0,1]$; moreover the diameter of q([0,1]) in L is less than or equal to λ .

Using the $L_1()$ and $L_2()$ we can now define the diameter of the *h*-cobordism W in the direction parallel to \mathcal{F} —denoted by $D_1(W)$ —and in the direction perpendicular to \mathcal{F} —denoted by $D_2(W)$. For each $y \in W$ let $p_y^-: [0,1] \to M$ denote the composition

$$[0,1] = (y) \times [0,1] \subset W \times [0,1] \xrightarrow{h^-} W = W \times 1 \xrightarrow{h^-} \partial_- W = M;$$

and let $p_u^+: [0,1] \to M$ denote the composition

$$[0,1] = (y) \times [0,1] \subset W \times [0,1] \xrightarrow{h^+} W = W \times 1 \xrightarrow{h^-} \partial_- W = M.$$

©1986 American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page

Received by the editors January 12, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 18F25, 57Q10, 57R80.

Both authors were supported in part by the NSF.